output from comb script & electrostatic mut changes calculated

This commit is contained in:
Tanushree Tunstall 2020-03-25 13:42:18 +00:00
parent 96ebb85069
commit de1822f491
4 changed files with 250 additions and 167 deletions

View file

@ -9,9 +9,9 @@ Created on Tue Aug 6 12:56:03 2019
# FIXME: include error checking to enure you only
# concentrate on positions that have structural info?
# FIXME: import dirs.py to get the basic dir paths available
#%% load libraries
###################
# load libraries
import os, sys
import pandas as pd
#import numpy as np
@ -52,19 +52,19 @@ from reference_dict import my_aa_dict #CHECK DIR STRUC THERE!
#========================================================
#%% variable assignment: input and output paths & filenames
drug = 'pyrazinamide'
gene = 'pncA'
gene_match = gene + '_p.'
#=======
#==========
# input dir
#=======
#==========
#indir = 'git/Data/pyrazinamide/input/original'
indir = homedir + '/' + 'git/Data'
#=========
#===========
# output dir
#=========
#===========
# several output files
# output filenames in respective sections at the time of outputting files
#outdir = 'git/Data/pyrazinamide/output'

View file

@ -1,13 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
"""
'''
# FIXME: include error checking to enure you only
# concentrate on positions that have structural info
# FIXME: import dirs.py to get the basic dir paths available
#%% load libraries
###################
@ -16,147 +15,160 @@ import os, sys
import pandas as pd
#import numpy as np
#from pandas.api.types import is_string_dtype
#from pandas.api.types import is_numeric_dtype
#====================================================
# TASK: calculate how many mutations result in
# electrostatic changes wrt wt
# Input: mcsm and AF_OR file
# output: mut_elec_changes_results.txt
# Output: mut_elec_changes_results.txt
#========================================================
#%%
####################
#%% specify homedir as python doesn't recognise tilde
homedir = os.path.expanduser('~')
# my working dir
os.getcwd()
homedir = os.path.expanduser('~') # spyder/python doesn't recognise tilde
os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
os.getcwd()
#%%
from reference_dict import my_aa_dict #CHECK DIR STRUC THERE!
#%%
############# specify variables for input and output paths and filenames
drug = "pyrazinamide"
gene = "pnca"
datadir = homedir + "/git/Data"
basedir = datadir + "/" + drug + "/input"
#========================================================
#%% variable assignment: input and output paths & filenames
drug = 'pyrazinamide'
gene = 'pncA'
gene_match = gene + '_p.'
# input
inpath = "/processed"
#==========
# data dir
#==========
#indir = 'git/Data/pyrazinamide/input/original'
datadir = homedir + '/' + 'git/Data'
# uncomment as necessary
in_filename = "/meta_data_with_AFandOR.csv"
#in_filename = "/mcsm_complex1_normalised.csv" # probably simpler
#==========
# input dir
#==========
indir = datadir + '/' + drug + '/' + 'input'
infile = basedir + inpath + in_filename
#print(infile)
#============
# output dir
#============
# several output files
outdir = datadir + '/' + drug + '/' + 'output'
# output file
outpath = "/output"
outdir = datadir + "/" + drug + outpath
out_filename = "/mut_elec_changes_results.txt"
outfile = outdir + out_filename
# specify output file
out_filename = 'mut_elec_changes.txt'
outfile = outdir + '/' + out_filename
print('Output path: ', outdir)
#print(outdir)
#%% end of variable assignment for input and output files
#=============================================================
#%% Read input files
#in_filename = gene.lower() + '_meta_data_with_AFandOR.csv'
in_filename = 'merged_df3.csv'
infile = outdir + '/' + in_filename
print('Reading input file (merged file):', infile)
if not os.path.exists(datadir):
print('Error!', datadir, 'does not exist. Please ensure it exists. Dir struc specified in README.md')
os.makedirs(datadir)
exit()
comb_df = pd.read_csv(infile, sep = ',')
if not os.path.exists(outdir):
print('Error!', outdir, 'does not exist.Please ensure it exists. Dir struc specified in README.md')
exit()
else:
print('Dir exists: Carrying on')
################## end of variable assignment for input and output files
#%%
#==============================================================================
############
# STEP 1: Read file
############
meta_pnca = pd.read_csv(infile, sep = ',')
print('Input filename: ', in_filename,
'\nPath :', outdir,
'\nNo. of rows: ', len(comb_df),
'\nNo. of cols: ', infile)
# column names
list(meta_pnca.columns)
list(comb_df.columns)
#========
# Step 2: iterate through the dict, create a lookup dict that i.e
# lookup_dict = {three_letter_code: aa_prop_polarity}
# Do this for both wild_type and mutant as above.
#=========
# initialise a sub dict that is lookup dict for three letter code to aa prop
lookup_dict = dict()
for k, v in my_aa_dict.items():
lookup_dict[k] = v['aa_calcprop']
#print(lookup_dict)
wt = meta_pnca['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on
meta_pnca['wt_calcprop'] = wt.map(lookup_dict)
mut = meta_pnca['mutation'].str.extract(r'\d+(\w{3})$').squeeze()
meta_pnca['mut_calcprop'] = mut.map(lookup_dict)
# added two more cols
# clear variables
del(k, v, wt, mut, lookup_dict)
del(in_filename, infile, inpath)
del(in_filename, infile)
#%%
###########
# Step 3: subset unique mutations
###########
meta_pnca_muts = meta_pnca.drop_duplicates(['Mutationinformation'], keep = 'first')
non_struc = meta_pnca_muts[meta_pnca_muts.position == 186]
#%% subset unique mutations
df = comb_df.drop_duplicates(['Mutationinformation'], keep = 'first')
# remove pos non_struc 186 : (in case you used file with AF and OR)
df = meta_pnca_muts[meta_pnca_muts.position != 186]
total_muts = df.Mutationinformation.nunique()
#df.Mutationinformation.count()
print('Total mutations associated with structure: ', total_muts)
###########
# Step 4: combine cols
###########
#%% combine aa_calcprop cols so that you can count the changes as value_counts
# check if all muts have been categorised
print('Checking if all muts have been categorised: ')
if df['wt_calcprop'].isna().sum() == 0 & df['mut_calcprop'].isna().sum():
print('PASS: No. NA detected i.e all muts have aa prop associated')
else:
print('FAIL: NAs detected i.e some muts remain unclassified')
df['aa_calcprop_combined'] = df['wt_calcprop']+ '->' + df['mut_calcprop']
df['aa_calcprop_combined']
df['wt_calcprop'].head()
df['mut_calcprop'].head()
print('Combining wt_calcprop and mut_calcprop...')
#df['aa_calcprop_combined'] = df['wt_calcprop']+ '->' + df['mut_calcprop']
df['aa_calcprop_combined'] = df.wt_calcprop.str.cat(df.mut_calcprop, sep = '->')
df['aa_calcprop_combined'].head()
mut_categ = df["aa_calcprop_combined"].unique()
print('Total no. of aa_calc properties: ', len(mut_categ))
print('Categories are: ', mut_categ)
# counting no. of muts in each mut categ
# way1: count values within each combinaton
df.groupby('aa_calcprop_combined').size()
#df.groupby('aa_calcprop_combined').count()
# way2: count values within each combinaton
#df['aa_calcprop_combined'].value_counts()
df['aa_calcprop_combined'].value_counts()
# comment: the two ways should be identical
# groupby result order is similar to pivot table order
# groupby result order is similar to pivot table order,
# I prefer the value_counts look
#assign to variable: count values within each combinaton
all_prop = df.groupby('aa_calcprop_combined').size()
# assign to variable: count values within each combinaton
all_prop = df['aa_calcprop_combined'].value_counts()
# convert to a df from Series
ap_df = pd.DataFrame({'aa_calcprop': all_prop.index, 'mut_count': all_prop.values})
# subset df to contain only the changes in prop
all_prop_change = ap_df[ap_df['aa_calcprop'].isin(['neg->neg','non-polar->non-polar','polar->polar', 'pos->pos']) == False]
elec_count = all_prop_change.mut_count.sum()
print('Total no.of muts with elec changes: ', elec_count)
# calculate percentage of electrostatic changes
elec_changes = (elec_count/total_muts) * 100
print("Total number of electrostatic changes resulting from Mutation is (%):", elec_changes)
print('Total number of electrostatic changes resulting from Mutation is (%):', elec_changes)
# check no change muts
no_change_muts = ap_df[ap_df['aa_calcprop'].isin(['neg->neg','non-polar->non-polar','polar->polar', 'pos->pos']) == True]
no_change_muts.mut_count.sum()
###########
# Step 5: output from console
###########
#sys.stdout = open(file, 'w')
sys.stdout = open(outfile, 'w')
print(df.groupby('aa_calcprop_combined').size() )
print("=======================================================================================")
print("Total number of electrostatic changes resulting from Mutation is (%):", elec_changes)
print("=======================================================================================")
#print(no_change_muts, '\n',
# all_prop_change)
print('======================\n'
,'Unchanged muts'
,'\n=====================\n'
, no_change_muts
,'\n=============================\n'
, 'Muts with changed prop:'
, '\n============================\n'
, all_prop_change)
#print('======================================================================')
#print('Total number of electrostatic changes resulting from Mutation is (%):', elec_changes)
#print('Total no. of muts: ', total_muts)
#print('Total no. of changed muts: ', all_prop_change.mut_count.sum())
#print('Total no. of unchanged muts: ', no_change_muts.mut_count.sum() )
#print('=======================================================================')
print('========================================================================'
, '\nTotal number of electrostatic changes resulting from Mtation is (%):', elec_changes
, '\nTotal no. of muts: ', total_muts
, '\nTotal no. of changed muts: ', all_prop_change.mut_count.sum()
, '\nTotal no. of unchanged muts: ', no_change_muts.mut_count.sum()
, '\n=========================================================================')