output from comb script & electrostatic mut changes calculated

This commit is contained in:
Tanushree Tunstall 2020-03-25 13:42:18 +00:00
parent 96ebb85069
commit de1822f491
4 changed files with 250 additions and 167 deletions

View file

@ -1,6 +1,19 @@
#########################################################
# TASK: To combine mcsm and meta data with af and or
# This script doesn't output anything, but can do if needed.
# TASK: To combine mcsm and meta data with af and or files
# Input csv files:
# 1) mcsm output formatted
# 2) gene associated meta_data_with_AFandOR
# Output:
# 1) muts with opposite effects on stability
# 2) large combined df including NAs for AF, OR,etc
# Dim: same no. of rows as gene associated meta_data_with_AFandOR
# 3) small combined df including NAs for AF, OR, etc.
# Dim: same as mcsm data
# 4) large combined df excluding NAs
# Dim: dim(#1) - no. of NAs(AF|OR) + 1
# 5) small combined df excluding NAs
# Dim: dim(#2) - no. of unique NAs - 1
# This script is sourced from other .R scripts for plotting
#########################################################
getwd()
@ -10,7 +23,6 @@ getwd()
##########################################################
# Installing and loading required packages
##########################################################
source('Header_TT.R')
#require(data.table)
#require(arsenal)
@ -21,19 +33,23 @@ source('Header_TT.R')
# Read file: normalised file
# output of step 4 mcsm_pipeline
#################################
#%% variable assignment: input and output paths & filenames
drug = 'pyrazinamide'
gene = 'pncA'
gene_match = paste0(gene,'_p.')
cat(gene_match)
#===========
# data dir
#===========
datadir = paste0('~/git/Data')
#===========
# input
#===========
# infile1: mCSM data
#indir = '~/git/Data/pyrazinamide/input/processed/'
indir = paste0('~/git/Data', '/', drug, '/', 'output') # revised {TODO: change in mcsm pipeline}
indir = paste0(datadir, '/', drug, '/', 'output') # revised {TODO: change in mcsm pipeline}
in_filename = 'mcsm_complex1_normalised.csv'
infile = paste0(indir, '/', in_filename)
cat(paste0('Reading infile1: mCSM output file', ' ', infile) )
@ -105,8 +121,9 @@ changes = mcsm_data[which(mcsm_data$DUET_outcome != mcsm_data$Lig_outcome),]
dl_i = which(mcsm_data$DUET_outcome != mcsm_data$Lig_outcome)
ld_i = which(mcsm_data$Lig_outcome != mcsm_data$DUET_outcome)
cat('Identifying muts with opposite stability effects')
if(nrow(changes) == (table(mcsm_data$DUET_outcome != mcsm_data$Lig_outcome)[[2]]) & identical(dl_i,ld_i)) {
cat('PASS: muts with opposite effects on stability and affinity identified correctly'
cat('PASS: muts with opposite effects on stability and affinity correctly identified'
, '\nNo. of such muts: ', nrow(changes))
}else {
cat('FAIL: unsuccessful in extracting muts with changed stability effects')
@ -134,6 +151,7 @@ mcsm_data = mcsm_data[order(mcsm_data$Mutationinformation),]
head(mcsm_data$Mutationinformation)
orig_col = ncol(mcsm_data)
# get freq count of positions and add to the df
setDT(mcsm_data)[, occurrence := .N, by = .(Position)]
@ -158,6 +176,20 @@ cat('Read mcsm_data file:'
, '\nNo.of rows: ', nrow(meta_with_afor)
, '\nNo. of cols:', ncol(meta_with_afor))
# counting NAs in AF, OR cols
if (identical(sum(is.na(meta_with_afor$OR))
, sum(is.na(meta_with_afor$pvalue))
, sum(is.na(meta_with_afor$AF)))){
cat('PASS: NA count match for OR, pvalue and AF\n')
na_count = sum(is.na(meta_with_afor$AF))
cat('No. of NAs: ', sum(is.na(meta_with_afor$OR)))
} else{
cat('FAIL: NA count mismatch'
, '\nNA in OR: ', sum(is.na(meta_with_afor$OR))
, '\nNA in pvalue: ', sum(is.na(meta_with_afor$pvalue))
, '\nNA in AF:', sum(is.na(meta_with_afor$AF)))
}
# clear variables
rm(in_filename_comb, infile_comb)
@ -172,15 +204,15 @@ head(meta_with_afor$Mutationinformation)
# 3: merging two dfs: with NA
###########################
# link col name = 'Mutationinforamtion'
head(mcsm_data$Mutationinformation)
head(meta_with_afor$Mutationinformation)
cat('Merging dfs with NAs: big df (1-many relationship b/w id & mut)'
,'\nlinking col: Mutationinforamtion'
,'\nfilename: merged_df2')
head(mcsm_data$Mutationinformation)
head(meta_with_afor$Mutationinformation)
#########
# merge 3a: meta data with mcsm
# merge 3a (merged_df2): meta data with mcsm
#########
merged_df2 = merge(x = meta_with_afor
,y = mcsm_data
@ -192,6 +224,8 @@ cat('Dim of merged_df2: '
, '\nNo. of cols: ', ncol(merged_df2))
head(merged_df2$Position)
# sanity check
cat('Checking nrows in merged_df2')
if(nrow(meta_with_afor) == nrow(merged_df2)){
cat('nrow(merged_df2) = nrow (gene associated metadata)'
,'\nExpected no. of rows: ',nrow(meta_with_afor)
@ -229,9 +263,9 @@ table(merged_df2$Position%in%merged_df2v2$Position)
rm(merged_df2v2)
#########
# merge 3b:remove duplicate mutation information
# merge 3b (merged_df3):remove duplicate mutation information
#########
cat('Merging dfs with NAs: small df (removing duplicate muts)'
cat('Merging dfs without NAs: small df (removing muts with no AF|OR associated)'
,'\nCannot trust lineage info from this'
,'\nlinking col: Mutationinforamtion'
,'\nfilename: merged_df3')
@ -244,8 +278,8 @@ cat('Merging dfs with NAs: small df (removing duplicate muts)'
merged_df3 = merged_df2[!duplicated(merged_df2$Mutationinformation),]
head(merged_df3$Position); tail(merged_df3$Position) # should be sorted
# sanity checks
# nrows of merged_df3 should be the same as the nrows of mcsm_data
# sanity check
cat('Checking nrows in merged_df3')
if(nrow(mcsm_data) == nrow(merged_df3)){
cat('PASS: No. of rows match with mcsm_data'
,'\nExpected no. of rows: ', nrow(mcsm_data)
@ -256,41 +290,51 @@ if(nrow(mcsm_data) == nrow(merged_df3)){
, '\nNo. of rows merged_df3: ', nrow(merged_df3))
}
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# uncomment as necessary
# only need to run this if merged_df2v2 i.e non structural pos included
#mcsm = mcsm_data$Mutationinformation
#my_merged = merged_df3$Mutationinformation
# find the index where it differs
#diff_n = which(!my_merged%in%mcsm)
#check if it is indeed pos 186
#merged_df3[diff_n,]
# remove this entry
#merged_df3 = merged_df3[-diff_n,]]
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# counting NAs in AF, OR cols in merged_df3
# this is becuase mcsm has no AF, OR cols,
# so you cannot count NAs
if (identical(sum(is.na(merged_df3$OR))
, sum(is.na(merged_df3$pvalue))
, sum(is.na(merged_df3$AF)))){
cat('PASS: NA count match for OR, pvalue and AF\n')
na_count_df3 = sum(is.na(merged_df3$AF))
cat('No. of NAs: ', sum(is.na(merged_df3$OR)))
} else{
cat('FAIL: NA count mismatch'
, '\nNA in OR: ', sum(is.na(merged_df3$OR))
, '\nNA in pvalue: ', sum(is.na(merged_df3$pvalue))
, '\nNA in AF:', sum(is.na(merged_df3$AF)))
}
###########################
# 4: merging two dfs: without NA
###########################
#########
# merge 4a (merged_df2_comp): same as merge 1 but excluding NA
#########
cat('Merging dfs without any NAs: big df (1-many relationship b/w id & mut)'
,'\nlinking col: Mutationinforamtion'
,'\nfilename: merged_df2_comp')
#########
# merge 4a: same as merge 1 but excluding NA
#########
merged_df2_comp = merged_df2[!is.na(merged_df2$AF),]
#merged_df2_comp = merged_df2[!duplicated(merged_df2$Mutationinformation),]
cat('Dim of merged_df2_comp: '
, '\nNo. of rows: ', nrow(merged_df2_comp)
, '\nNo. of cols: ', ncol(merged_df2_comp))
# sanity check
cat('Checking nrows in merged_df2_comp')
if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count + 1)){
cat('PASS: No. of rows match'
,'\nDim of merged_df2_comp: '
,'\nExpected no. of rows: ', nrow(merged_df2) - na_count + 1
, '\nNo. of rows: ', nrow(merged_df2_comp)
, '\nNo. of cols: ', ncol(merged_df2_comp))
}else{
cat('FAIL: No. of rows mismatch'
,'\nExpected no. of rows: ', nrow(merged_df2) - na_count + 1
,'\nGot no. of rows: ', nrow(merged_df2_comp))
}
#########
# merge 4b: remove duplicate mutation information
# merge 4b (merged_df3_comp): remove duplicate mutation information
#########
merged_df3_comp = merged_df2_comp[!duplicated(merged_df2_comp$Mutationinformation),]
@ -305,38 +349,65 @@ all.equal(foo, merged_df3)
summary(comparedf(foo, merged_df3))
# sanity check
cat('Checking nrows in merged_df3_comp')
if(nrow(merged_df3_comp) == nrow(merged_df3)){
cat('NO NAs detected in merged_df3 in AF|OR cols'
,'\nNo. of rows are identical: ', nrow(merged_df3))
} else{
if(nrow(merged_df3_comp) == nrow(merged_df3) - na_count_df3) {
cat('PASS: NAs detected in merged_df3 in AF|OR cols'
, '\nNo. of NAs: ', na_count_df3
, '\nExpected no. of rows in merged_df3_comp: ', nrow(merged_df3) - na_count_df3
, '\nGot no. of rows: ', nrow(merged_df3_comp))
}
}
#=============== end of combining df
#*********************
# write_output files
# output dir
#outdir = '~/git/Data/pyrazinamide/output/'
#uncomment as necessary
#FIXME
#out_filenames = c('merged_df2'
# , 'merged_df3'
# , 'meregd_df2_comp'
# , 'merged_df3_comp'
#)
# writing 1 file in the style of a loop: merged_df3
# print(output dir)
#i = 'merged_df3'
#out_filename = paste0(i, '.csv')
#outfile = paste0(outdir, '/', out_filename)
#cat('Writing output files: '
# , '\nPath:', outdir)
#cat('Writing output file: '
# ,'\nFilename: ', out_filename
# ,'\nPath: ', outdir)
#for (i in out_filenames){
# print(i)
# print(get(i))
# outvar = get(i)
# print(outvar)
# outfile = paste0(outdir, '/', outvar, '.csv')
# cat('Writing output file:'
# ,'\nFilename: ', outfile
# ,'\n')
# write.csv(outvar, outfile)
# cat('Finished writing file:'
# ,'\nNo. of rows:', nrow(outvar)
# , '\nNo. of cols:', ncol(outvar))
#}
#template: write.csv(merged_df3, 'merged_df3.csv')
#write.csv(get(i), outfile, row.names = FALSE)
#cat('Finished writing: ', outfile
# , '\nNo. of rows: ', nrow(get(i))
# , '\nNo. of cols: ', ncol(get(i)))
#sapply(out_filenames, function(x) write.csv(x, 'x.csv'))
#%% write_output files; all 4 files:
outvars = c('merged_df2'
, 'merged_df3'
, 'merged_df2_comp'
, 'merged_df3_comp')
cat('Writing output files: '
, '\nPath:', outdir)
for (i in outvars){
# cat(i, '\n')
out_filename = paste0(i, '.csv')
# cat(out_filename, '\n')
# cat('getting value of variable: ', get(i))
outfile = paste0(outdir, '/', out_filename)
# cat('Full output path: ', outfile, '\n')
cat('Writing output file:'
,'\nFilename: ', out_filename,'\n')
write.csv(get(i), outfile, row.names = FALSE)
cat('Finished writing: ', outfile
, '\nNo. of rows: ', nrow(get(i))
, '\nNo. of cols: ', ncol(get(i)), '\n')
}
# alternate way to replace with implicit loop
# FIXME
#sapply(outvars, function(x, y) write.csv(get(outvars), paste0(outdir, '/', outvars, '.csv')))
#*************************
# clear variables
rm(mcsm_data, meta_with_afor, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, orig_col, outdir)

View file

@ -1,8 +1,8 @@
#########################################################
# TASK: To combine mcsm and meta data with af and or
# by filtering for distance to ligand (<10Ang).
# This script doesn't output anything, but can do if needed.
# This script is sourced from other .R scripts for plotting
# This script doesn't output anything.
# This script is sourced from other .R scripts for plotting ligand plots
#########################################################
getwd()
setwd('~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/')

View file

@ -9,9 +9,9 @@ Created on Tue Aug 6 12:56:03 2019
# FIXME: include error checking to enure you only
# concentrate on positions that have structural info?
# FIXME: import dirs.py to get the basic dir paths available
#%% load libraries
###################
# load libraries
import os, sys
import pandas as pd
#import numpy as np
@ -52,19 +52,19 @@ from reference_dict import my_aa_dict #CHECK DIR STRUC THERE!
#========================================================
#%% variable assignment: input and output paths & filenames
drug = 'pyrazinamide'
gene = 'pncA'
gene_match = gene + '_p.'
#=======
#==========
# input dir
#=======
#==========
#indir = 'git/Data/pyrazinamide/input/original'
indir = homedir + '/' + 'git/Data'
#=========
#===========
# output dir
#=========
#===========
# several output files
# output filenames in respective sections at the time of outputting files
#outdir = 'git/Data/pyrazinamide/output'

View file

@ -1,13 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
"""
'''
# FIXME: include error checking to enure you only
# concentrate on positions that have structural info
# FIXME: import dirs.py to get the basic dir paths available
#%% load libraries
###################
@ -16,147 +15,160 @@ import os, sys
import pandas as pd
#import numpy as np
#from pandas.api.types import is_string_dtype
#from pandas.api.types import is_numeric_dtype
#====================================================
# TASK: calculate how many mutations result in
# electrostatic changes wrt wt
# Input: mcsm and AF_OR file
# output: mut_elec_changes_results.txt
# Output: mut_elec_changes_results.txt
#========================================================
#%%
####################
#%% specify homedir as python doesn't recognise tilde
homedir = os.path.expanduser('~')
# my working dir
os.getcwd()
homedir = os.path.expanduser('~') # spyder/python doesn't recognise tilde
os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
os.getcwd()
#%%
from reference_dict import my_aa_dict #CHECK DIR STRUC THERE!
#%%
############# specify variables for input and output paths and filenames
drug = "pyrazinamide"
gene = "pnca"
datadir = homedir + "/git/Data"
basedir = datadir + "/" + drug + "/input"
#========================================================
#%% variable assignment: input and output paths & filenames
drug = 'pyrazinamide'
gene = 'pncA'
gene_match = gene + '_p.'
# input
inpath = "/processed"
#==========
# data dir
#==========
#indir = 'git/Data/pyrazinamide/input/original'
datadir = homedir + '/' + 'git/Data'
# uncomment as necessary
in_filename = "/meta_data_with_AFandOR.csv"
#in_filename = "/mcsm_complex1_normalised.csv" # probably simpler
#==========
# input dir
#==========
indir = datadir + '/' + drug + '/' + 'input'
infile = basedir + inpath + in_filename
#print(infile)
#============
# output dir
#============
# several output files
outdir = datadir + '/' + drug + '/' + 'output'
# output file
outpath = "/output"
outdir = datadir + "/" + drug + outpath
out_filename = "/mut_elec_changes_results.txt"
outfile = outdir + out_filename
# specify output file
out_filename = 'mut_elec_changes.txt'
outfile = outdir + '/' + out_filename
print('Output path: ', outdir)
#print(outdir)
#%% end of variable assignment for input and output files
#=============================================================
#%% Read input files
#in_filename = gene.lower() + '_meta_data_with_AFandOR.csv'
in_filename = 'merged_df3.csv'
infile = outdir + '/' + in_filename
print('Reading input file (merged file):', infile)
if not os.path.exists(datadir):
print('Error!', datadir, 'does not exist. Please ensure it exists. Dir struc specified in README.md')
os.makedirs(datadir)
exit()
comb_df = pd.read_csv(infile, sep = ',')
if not os.path.exists(outdir):
print('Error!', outdir, 'does not exist.Please ensure it exists. Dir struc specified in README.md')
exit()
else:
print('Dir exists: Carrying on')
################## end of variable assignment for input and output files
#%%
#==============================================================================
############
# STEP 1: Read file
############
meta_pnca = pd.read_csv(infile, sep = ',')
print('Input filename: ', in_filename,
'\nPath :', outdir,
'\nNo. of rows: ', len(comb_df),
'\nNo. of cols: ', infile)
# column names
list(meta_pnca.columns)
list(comb_df.columns)
#========
# Step 2: iterate through the dict, create a lookup dict that i.e
# lookup_dict = {three_letter_code: aa_prop_polarity}
# Do this for both wild_type and mutant as above.
#=========
# initialise a sub dict that is lookup dict for three letter code to aa prop
lookup_dict = dict()
for k, v in my_aa_dict.items():
lookup_dict[k] = v['aa_calcprop']
#print(lookup_dict)
wt = meta_pnca['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on
meta_pnca['wt_calcprop'] = wt.map(lookup_dict)
mut = meta_pnca['mutation'].str.extract(r'\d+(\w{3})$').squeeze()
meta_pnca['mut_calcprop'] = mut.map(lookup_dict)
# added two more cols
# clear variables
del(k, v, wt, mut, lookup_dict)
del(in_filename, infile, inpath)
del(in_filename, infile)
#%%
###########
# Step 3: subset unique mutations
###########
meta_pnca_muts = meta_pnca.drop_duplicates(['Mutationinformation'], keep = 'first')
non_struc = meta_pnca_muts[meta_pnca_muts.position == 186]
#%% subset unique mutations
df = comb_df.drop_duplicates(['Mutationinformation'], keep = 'first')
# remove pos non_struc 186 : (in case you used file with AF and OR)
df = meta_pnca_muts[meta_pnca_muts.position != 186]
total_muts = df.Mutationinformation.nunique()
#df.Mutationinformation.count()
print('Total mutations associated with structure: ', total_muts)
###########
# Step 4: combine cols
###########
#%% combine aa_calcprop cols so that you can count the changes as value_counts
# check if all muts have been categorised
print('Checking if all muts have been categorised: ')
if df['wt_calcprop'].isna().sum() == 0 & df['mut_calcprop'].isna().sum():
print('PASS: No. NA detected i.e all muts have aa prop associated')
else:
print('FAIL: NAs detected i.e some muts remain unclassified')
df['aa_calcprop_combined'] = df['wt_calcprop']+ '->' + df['mut_calcprop']
df['aa_calcprop_combined']
df['wt_calcprop'].head()
df['mut_calcprop'].head()
print('Combining wt_calcprop and mut_calcprop...')
#df['aa_calcprop_combined'] = df['wt_calcprop']+ '->' + df['mut_calcprop']
df['aa_calcprop_combined'] = df.wt_calcprop.str.cat(df.mut_calcprop, sep = '->')
df['aa_calcprop_combined'].head()
mut_categ = df["aa_calcprop_combined"].unique()
print('Total no. of aa_calc properties: ', len(mut_categ))
print('Categories are: ', mut_categ)
# counting no. of muts in each mut categ
# way1: count values within each combinaton
df.groupby('aa_calcprop_combined').size()
#df.groupby('aa_calcprop_combined').count()
# way2: count values within each combinaton
#df['aa_calcprop_combined'].value_counts()
df['aa_calcprop_combined'].value_counts()
# comment: the two ways should be identical
# groupby result order is similar to pivot table order
# groupby result order is similar to pivot table order,
# I prefer the value_counts look
#assign to variable: count values within each combinaton
all_prop = df.groupby('aa_calcprop_combined').size()
# assign to variable: count values within each combinaton
all_prop = df['aa_calcprop_combined'].value_counts()
# convert to a df from Series
ap_df = pd.DataFrame({'aa_calcprop': all_prop.index, 'mut_count': all_prop.values})
# subset df to contain only the changes in prop
all_prop_change = ap_df[ap_df['aa_calcprop'].isin(['neg->neg','non-polar->non-polar','polar->polar', 'pos->pos']) == False]
elec_count = all_prop_change.mut_count.sum()
print('Total no.of muts with elec changes: ', elec_count)
# calculate percentage of electrostatic changes
elec_changes = (elec_count/total_muts) * 100
print("Total number of electrostatic changes resulting from Mutation is (%):", elec_changes)
print('Total number of electrostatic changes resulting from Mutation is (%):', elec_changes)
# check no change muts
no_change_muts = ap_df[ap_df['aa_calcprop'].isin(['neg->neg','non-polar->non-polar','polar->polar', 'pos->pos']) == True]
no_change_muts.mut_count.sum()
###########
# Step 5: output from console
###########
#sys.stdout = open(file, 'w')
sys.stdout = open(outfile, 'w')
print(df.groupby('aa_calcprop_combined').size() )
print("=======================================================================================")
print("Total number of electrostatic changes resulting from Mutation is (%):", elec_changes)
print("=======================================================================================")
#print(no_change_muts, '\n',
# all_prop_change)
print('======================\n'
,'Unchanged muts'
,'\n=====================\n'
, no_change_muts
,'\n=============================\n'
, 'Muts with changed prop:'
, '\n============================\n'
, all_prop_change)
#print('======================================================================')
#print('Total number of electrostatic changes resulting from Mutation is (%):', elec_changes)
#print('Total no. of muts: ', total_muts)
#print('Total no. of changed muts: ', all_prop_change.mut_count.sum())
#print('Total no. of unchanged muts: ', no_change_muts.mut_count.sum() )
#print('=======================================================================')
print('========================================================================'
, '\nTotal number of electrostatic changes resulting from Mtation is (%):', elec_changes
, '\nTotal no. of muts: ', total_muts
, '\nTotal no. of changed muts: ', all_prop_change.mut_count.sum()
, '\nTotal no. of unchanged muts: ', no_change_muts.mut_count.sum()
, '\n=========================================================================')