resolving missing mutation info in combining script

This commit is contained in:
Tanushree Tunstall 2020-09-04 20:55:55 +01:00
parent bba3487829
commit ddefcd7841
3 changed files with 87 additions and 17 deletions

View file

@ -54,6 +54,7 @@ os.getcwd()
# FIXME: local imports # FIXME: local imports
#from combining import combine_dfs_with_checks #from combining import combine_dfs_with_checks
from combining_FIXME import detect_common_cols from combining_FIXME import detect_common_cols
from reference_dict import oneletter_aa_dict # CHECK DIR STRUC THERE!
#======================================================================= #=======================================================================
#%% command line args #%% command line args
arg_parser = argparse.ArgumentParser() arg_parser = argparse.ArgumentParser()
@ -155,6 +156,8 @@ ncols_m1 = len(mcsm_foldx_dfs.columns)
print('\n\nResult of first merge:', mcsm_foldx_dfs.shape print('\n\nResult of first merge:', mcsm_foldx_dfs.shape
, '\n===================================================================') , '\n===================================================================')
mcsm_foldx_dfs[merging_cols_m1].apply(len)
mcsm_foldx_dfs[merging_cols_m1].apply(len) == len(mcsm_foldx_dfs)
#%%============================================================================ #%%============================================================================
print('===================================' print('==================================='
, '\nSecond merge: dssp + kd' , '\nSecond merge: dssp + kd'
@ -183,6 +186,8 @@ ncols_m3 = len(dssp_kd_rd_dfs.columns)
print('\n\nResult of Third merge:', dssp_kd_rd_dfs.shape print('\n\nResult of Third merge:', dssp_kd_rd_dfs.shape
, '\n===================================================================') , '\n===================================================================')
dssp_kd_rd_dfs[merging_cols_m3].apply(len)
dssp_kd_rd_dfs[merging_cols_m3].apply(len) == len(dssp_kd_rd_dfs)
#%%============================================================================ #%%============================================================================
print('=======================================' print('======================================='
, '\nFourth merge: First merge + Third merge' , '\nFourth merge: First merge + Third merge'
@ -203,12 +208,14 @@ else:
print('\nResult of Fourth merge:', combined_df.shape print('\nResult of Fourth merge:', combined_df.shape
, '\n===================================================================') , '\n===================================================================')
combined_df[merging_cols_m4].apply(len)
combined_df[merging_cols_m4].apply(len) == len(combined_df)
#%%============================================================================ #%%============================================================================
# OR merges: TEDIOUSSSS!!!! # OR merges: TEDIOUSSSS!!!!
#%%RRRR #%%
print('===================================' print('==================================='
, '\nFifth merge: afor_df + afor_kin_df' , '\nFifth merge: afor_df + afor_kin_df'
, '\n===================================') , '\n===================================')
@ -220,8 +227,6 @@ afor_df = pd.read_csv(infile_afor, sep = ',')
afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',') afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',')
afor_kin_df.columns = afor_kin_df.columns.str.lower() afor_kin_df.columns = afor_kin_df.columns.str.lower()
merging_cols_m5 = detect_common_cols(afor_df, afor_kin_df) merging_cols_m5 = detect_common_cols(afor_df, afor_kin_df)
print('Dim of afor_df:', afor_df.shape print('Dim of afor_df:', afor_df.shape
@ -244,7 +249,7 @@ common_muts = len(afor_df[afor_df['mutation'].isin(afor_kin_df['mutation'])])
extra_muts_myor = afor_kin_df.shape[0] - common_muts extra_muts_myor = afor_kin_df.shape[0] - common_muts
print('==========================================' print('=========================================='
, '\nmy or calcs', extra_muts_myor, 'extra mutation\n' , '\nmy or calcs has', extra_muts_myor, 'extra mutations'
, '\n==========================================') , '\n==========================================')
print('Expected cals for merging with outer_join...') print('Expected cals for merging with outer_join...')
@ -261,12 +266,13 @@ else:
, '\nCheck expected rows and cols calculation and join type') , '\nCheck expected rows and cols calculation and join type')
print('Dim of merged ors_df:', ors_df.shape) print('Dim of merged ors_df:', ors_df.shape)
ors_df[merging_cols_m5].apply(len)
ors_df[merging_cols_m5].apply(len) == len(ors_df)
#%%============================================================================ #%%============================================================================
# formatting ors_df # formatting ors_df
ors_df.columns ors_df.columns
# Dropping unncessary columns: already removed in ealier preprocessing # Dropping unncessary columns: already removed in ealier preprocessing
#cols_to_drop = ['reference_allele', 'alternate_allele', 'symbol' ] #cols_to_drop = ['reference_allele', 'alternate_allele', 'symbol' ]
cols_to_drop = ['n_miss'] cols_to_drop = ['n_miss']
@ -324,7 +330,7 @@ column_order = ['mutation'
#, 'n_miss' #, 'n_miss'
] ]
if ( (len(column_order) == ors_df.shape[1]) and (DataFrame(column_order).isin(ors_df.columns).all().all()): if ( (len(column_order) == ors_df.shape[1]) and (DataFrame(column_order).isin(ors_df.columns).all().all())):
print('PASS: Column order generated for all:', len(column_order), 'columns' print('PASS: Column order generated for all:', len(column_order), 'columns'
, '\nColumn names match, safe to reorder columns' , '\nColumn names match, safe to reorder columns'
, '\nApplying column order to df...' ) , '\nApplying column order to df...' )
@ -357,10 +363,35 @@ print('Checking mutations in the two dfs:'
#print('\nNo. of common muts:', np.intersect1d(combined_df['mutationinformation'], ors_df_ordered['mutationinformation']) ) #print('\nNo. of common muts:', np.intersect1d(combined_df['mutationinformation'], ors_df_ordered['mutationinformation']) )
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
combined_df_all = pd.merge(combined_df, ors_df, on = merging_cols_m6, how = l_join) combined_df_all = pd.merge(combined_df, ors_df, on = merging_cols_m6, how = l_join)
combined_df_all.shape combined_df_all.shape
# populate mut_info_f1
combined_df_all['mut_info_f1'].isna().sum()
combined_df_all['mut_info_f1'] = combined_df_all['position'].astype(str) + combined_df_all['wild_type'] + '>' + combined_df_all['position'].astype(str) + combined_df_all['mutant_type']
combined_df_all['mut_info_f1'].isna().sum()
# populate mut_type
combined_df_all['mut_type'].isna().sum()
#mut_type_word = combined_df_all['mut_type'].value_counts()
mut_type_word = 'missense' # FIXME, should be derived
combined_df_all['mut_type'].fillna(mut_type_word, inplace = True)
combined_df_all['mut_type'].isna().sum()
# populate gene_id
combined_df_all['gene_id'].isna().sum()
#gene_id_word = combined_df_all['gene_id'].value_counts()
gene_id_word = 'Rv2043c' # FIXME, should be derived
combined_df_all['gene_id'].fillna(gene_id_word, inplace = True)
combined_df_all['gene_id'].isna().sum()
# populate gene_name
combined_df_all['gene_name'].isna().sum()
combined_df_all['gene_name'].value_counts()
combined_df_all['gene_name'].fillna(gene, inplace = True)
combined_df_all['gene_name'].isna().sum()
# FIXME: DIM # FIXME: DIM
# only with left join! # only with left join!
outdf_expected_rows = len(combined_df) outdf_expected_rows = len(combined_df)
@ -383,11 +414,52 @@ else:
, '\nmuts in df2 but NOT in df1:' , '\nmuts in df2 but NOT in df1:'
, ors_df['mutationinformation'].isin(combined_df['mutationinformation']).sum()) , ors_df['mutationinformation'].isin(combined_df['mutationinformation']).sum())
sys.exit() sys.exit()
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# nan in mutation col
# FIXME: should get fixmed with JP's resolved dataset!? #%% IMPORTANT: check if mutation related info is all populated after this merge
combined_df_all['mutation'].isna().sum() # FIXME: should get fixed with JP's resolved dataset!?
baz = combined_df_all[combined_df_all['mutation'].isna()] check_nan = combined_df_all.isna().sum(axis = 0)
# relevant mut cols
check_mut_cols = merging_cols_m5 + merging_cols_m6
count_na_mut_cols = combined_df_all[check_mut_cols].isna().sum().reset_index().rename(columns = {'index': 'col_name', 0: 'na_count'})
if (count_na_mut_cols['na_count'].sum() > 0).any():
# FIXME: static override, generate 'mutation' from variable
na_muts_n = combined_df_all['mutation'].isna().sum()
baz = combined_df_all[combined_df_all['mutation'].isna()]
baz = baz[check_mut_cols]
print(na_muts_n, 'mutations have missing \'mutation\' info.'
, '\nFetching these from reference dict...')
lookup_dict = dict()
for k, v in oneletter_aa_dict.items():
lookup_dict[k] = v['three_letter_code_lower']
print(lookup_dict)
wt_3let = combined_df_all['wild_type'].map(lookup_dict).str.capitalize()
#print(wt_3let)
pos = combined_df_all['position'].astype(str)
#print(pos)
mt_3let = combined_df_all['mutant_type'].map(lookup_dict).str.capitalize()
#print(mt_3let)
baz['mutation'] = 'pnca_p.' + wt_3let + pos + mt_3let
print(combined_df_all['mutation'])
# populate mut_info_f2
combined_df_all['mut_info_f2'] = combined_df_all['mutation'].str.replace(gene_match.lower(), 'p.', regex = True)
#%% merge
#merging_cols_m7 = detect_common_cols(combined_df_all, baz)
baz2 = baz[['mutationinformation', 'mut_info_f2']]
baz2 = baz2.drop_duplicates()
merging_cols_m7 = detect_common_cols(combined_df_all, baz2)
combined_df_all2 = pd.merge(combined_df_all, baz2
#, on = merging_cols_m7
, on = 'mutationinformation'
, how = o_join)
#%%============================================================================ #%%============================================================================
output_cols = combined_df_all.columns output_cols = combined_df_all.columns
print('Output cols:', output_cols) print('Output cols:', output_cols)

View file

@ -45,8 +45,6 @@ Created on Tue Aug 6 12:56:03 2019
#5. chain #5. chain
#6. wild_pos #6. wild_pos
#7. wild_chain_pos #7. wild_chain_pos
#======================================================================= #=======================================================================
#%% load libraries #%% load libraries
import os, sys import os, sys

View file

@ -104,7 +104,7 @@ or_df.columns
#%% snp_info file: master and gene specific ones #%% snp_info file: master and gene specific ones
# gene info # gene info
info_df2 = pd.read_csv(gene_info, sep = '\t', header = 0) #447, 10 info_df2 = pd.read_csv(gene_info, sep = '\t', header = 0) #447, 11
#info_df2 = pd.read_csv(gene_info, sep = ',', header = 0) #447 10 #info_df2 = pd.read_csv(gene_info, sep = ',', header = 0) #447 10
mis_mut_cover = (info_df2['chromosome_number'].nunique()/info_df2['chromosome_number'].count()) * 100 mis_mut_cover = (info_df2['chromosome_number'].nunique()/info_df2['chromosome_number'].count()) * 100
print('*****RESULT*****' print('*****RESULT*****'
@ -212,7 +212,7 @@ else:
#PENDING Jody's reply #PENDING Jody's reply
# !!!!!!!! # !!!!!!!!
# drop nan from dfm2_mis as these are not useful # drop nan from dfm2_mis as these are not useful and JP confirmed the same
print('Dropping NAs before further processing...') print('Dropping NAs before further processing...')
dfm2_mis = dfm2[dfm2['mut_type'].notnull()] dfm2_mis = dfm2[dfm2['mut_type'].notnull()]
# !!!!!!!! # !!!!!!!!