script to plot lineage dist plots
This commit is contained in:
parent
645868ea27
commit
dd1158a66c
1 changed files with 232 additions and 0 deletions
232
scripts/plotting/lineage_dist_PS.R
Normal file
232
scripts/plotting/lineage_dist_PS.R
Normal file
|
@ -0,0 +1,232 @@
|
|||
#!/usr/bin/env Rscript
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting/")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
source("../Header_TT.R")
|
||||
#source("../barplot_colour_function.R")
|
||||
#require(data.table)
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for PS #
|
||||
########################################################################
|
||||
|
||||
source("combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA for <drug>
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA for <drug>
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#===========================
|
||||
|
||||
###########################
|
||||
# Data for plots
|
||||
# you need merged_df2 or merged_df2_comp
|
||||
# since this is one-many relationship
|
||||
# i.e the same SNP can belong to multiple lineages
|
||||
# using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available, hence use df with NA
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df2
|
||||
#my_df = merged_df2_comp
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
# delete variables not required
|
||||
rm(my_df_u, merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
is.factor(my_df$lineage)
|
||||
my_df$lineage = as.factor(my_df$lineage)
|
||||
is.factor(my_df$lineage)
|
||||
|
||||
table(my_df$mutation_info); str(my_df$mutation_info)
|
||||
|
||||
# subset df with dr muts only
|
||||
my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide")
|
||||
table(my_df_dr$mutation_info)
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#==========================
|
||||
# Run two times:
|
||||
# uncomment as necessary
|
||||
# 1) for all muts
|
||||
# 2) for dr_muts
|
||||
#===========================
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
|
||||
#================
|
||||
# for ALL muts
|
||||
#================
|
||||
plot_df = my_df
|
||||
my_plot_name = 'lineage_dist_PS.svg'
|
||||
|
||||
plot_lineage_duet = paste0(plotdir,"/", my_plot_name)
|
||||
|
||||
#my_plot_name = 'lineage_dist_PS_comp.svg'
|
||||
|
||||
#================
|
||||
# for dr muts ONLY
|
||||
#================
|
||||
plot_df = my_df_dr
|
||||
#my_plot_name = 'lineage_dist_dr_PS.svg'
|
||||
#my_plot_name = 'lineage_dist_dr_PS_comp.svg'
|
||||
my_plot_name = 'lineage_dist_drug_muts_PS.svg'
|
||||
|
||||
plot_lineage_duet = paste0(plotdir,"/", my_plot_name)
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
#==========================
|
||||
# Plot: Lineage Distribution
|
||||
# x = mcsm_values, y = dist
|
||||
# fill = stability
|
||||
#============================
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
table(plot_df$lineage); str(plot_df$lineage)
|
||||
|
||||
# subset only lineages1-4
|
||||
sel_lineages = c("lineage1"
|
||||
, "lineage2"
|
||||
, "lineage3"
|
||||
, "lineage4")
|
||||
#, "lineage5"
|
||||
#, "lineage6"
|
||||
#, "lineage7")
|
||||
|
||||
# uncomment as necessary
|
||||
df_lin = subset(plot_df, subset = lineage %in% sel_lineages )
|
||||
table(df_lin$lineage)
|
||||
|
||||
# refactor
|
||||
df_lin$lineage = factor(df_lin$lineage)
|
||||
|
||||
sum(table(df_lin$lineage)) #{RESULT: Total number of samples for lineage}
|
||||
|
||||
table(df_lin$lineage)#{RESULT: No of samples within lineage}
|
||||
|
||||
length(unique(df_lin$mutationinformation))#{Result: No. of unique mutations the 4 lineages contribute to}
|
||||
|
||||
length(df_lin$mutationinformation)
|
||||
# sanity checks
|
||||
# FIXME
|
||||
r1 = 2:7 # when merged_df2 used: because there is missing lineages
|
||||
if(sum(table(plot_df$lineage)[r1]) == nrow(df_lin)) {
|
||||
print ("sanity check passed: numbers match")
|
||||
} else{
|
||||
print("Error!: check your numbers")
|
||||
}
|
||||
|
||||
u2 = unique(plot_df$mutationinformation)
|
||||
u = unique(df_lin$mutationinformation)
|
||||
check = u2[!u2%in%u]; print(check) #{Muts not present within selected lineages}
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
df <- df_lin
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
rm(df_lin)
|
||||
|
||||
#******************
|
||||
# generate distribution plot of lineages
|
||||
#******************
|
||||
# 2 : ggridges (good!)
|
||||
my_ats = 15 # axis text size
|
||||
my_als = 20 # axis label size
|
||||
|
||||
my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4'
|
||||
#, 'Lineage 5', 'Lineage 6', 'Lineage 7'
|
||||
)
|
||||
names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4'
|
||||
# , 'lineage5', 'lineage6', 'lineage7'
|
||||
)
|
||||
# check plot name
|
||||
my_plot_name
|
||||
|
||||
# output svg
|
||||
svg(plot_lineage_duet)
|
||||
printFile = ggplot(df, aes(x = duet_scaled
|
||||
, y = duet_outcome))+
|
||||
|
||||
#printFile=geom_density_ridges_gradient(
|
||||
geom_density_ridges_gradient(aes(fill = ..x..)
|
||||
, scale = 3
|
||||
, size = 0.3 ) +
|
||||
facet_wrap( ~lineage
|
||||
, scales = "free"
|
||||
# , switch = 'x'
|
||||
, labeller = labeller(lineage = my_labels) ) +
|
||||
coord_cartesian( xlim = c(-1, 1)
|
||||
# , ylim = c(0, 6)
|
||||
# , clip = "off"
|
||||
) +
|
||||
scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4")
|
||||
, name = "DUET" ) +
|
||||
theme(axis.text.x = element_text(size = my_ats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
# , axis.text.y = element_text(size = my_ats
|
||||
# , angle = 0
|
||||
# , hjust = 1
|
||||
# , vjust = 0)
|
||||
, axis.text.y = element_blank()
|
||||
, axis.title.x = element_blank()
|
||||
, axis.title.y = element_blank()
|
||||
, axis.ticks.y = element_blank()
|
||||
, plot.title = element_blank()
|
||||
, strip.text = element_text(size = my_als)
|
||||
, legend.text = element_text(size = 10)
|
||||
, legend.title = element_text(size = my_als)
|
||||
# , legend.position = c(0.3, 0.8)
|
||||
# , legend.key.height = unit(1, 'mm')
|
||||
)
|
||||
|
||||
print(printFile)
|
||||
dev.off()
|
||||
|
||||
#=!=!=!=!=!=!=!
|
||||
# COMMENT: Not much differences in the distributions
|
||||
# when using merged_df2 or merged_df2_comp.
|
||||
# Also, the lineage differences disappear when looking at all muts
|
||||
# The pattern we are interested in is possibly only for dr_mutations
|
||||
#=!=!=!=!=!=!=!
|
||||
#===================================================
|
||||
|
||||
# COMPARING DISTRIBUTIONS: KS test
|
||||
# run: "../KS_test_PS.R"
|
||||
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue