script to plot lineage dist plots

This commit is contained in:
Tanushree Tunstall 2020-09-04 22:40:49 +01:00
parent 645868ea27
commit dd1158a66c

View file

@ -0,0 +1,232 @@
#!/usr/bin/env Rscript
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
########################################################################
# Installing and loading required packages #
########################################################################
source("../Header_TT.R")
#source("../barplot_colour_function.R")
#require(data.table)
########################################################################
# Read file: call script for combining df for PS #
########################################################################
source("combining_two_df.R")
#---------------------- PAY ATTENTION
# the above changes the working dir
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
#---------------------- PAY ATTENTION
#==========================
# This will return:
# df with NA for <drug>
# merged_df2
# merged_df3
# df without NA for <drug>
# merged_df2_comp
# merged_df3_comp
#===========================
###########################
# Data for plots
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
# using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available, hence use df with NA
###########################
# uncomment as necessary
#%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
my_df = merged_df2
#my_df = merged_df2_comp
#%%%%%%%%%%%%%%%%%%%%%%%%
# delete variables not required
rm(my_df_u, merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_df)
str(my_df)
# Ensure correct data type in columns to plot: need to be factor
is.factor(my_df$lineage)
my_df$lineage = as.factor(my_df$lineage)
is.factor(my_df$lineage)
table(my_df$mutation_info); str(my_df$mutation_info)
# subset df with dr muts only
my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide")
table(my_df_dr$mutation_info)
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
#==========================
# Run two times:
# uncomment as necessary
# 1) for all muts
# 2) for dr_muts
#===========================
#%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
#================
# for ALL muts
#================
plot_df = my_df
my_plot_name = 'lineage_dist_PS.svg'
plot_lineage_duet = paste0(plotdir,"/", my_plot_name)
#my_plot_name = 'lineage_dist_PS_comp.svg'
#================
# for dr muts ONLY
#================
plot_df = my_df_dr
#my_plot_name = 'lineage_dist_dr_PS.svg'
#my_plot_name = 'lineage_dist_dr_PS_comp.svg'
my_plot_name = 'lineage_dist_drug_muts_PS.svg'
plot_lineage_duet = paste0(plotdir,"/", my_plot_name)
#%%%%%%%%%%%%%%%%%%%%%%%%
#==========================
# Plot: Lineage Distribution
# x = mcsm_values, y = dist
# fill = stability
#============================
#===================
# Data for plots
#===================
table(plot_df$lineage); str(plot_df$lineage)
# subset only lineages1-4
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4")
#, "lineage5"
#, "lineage6"
#, "lineage7")
# uncomment as necessary
df_lin = subset(plot_df, subset = lineage %in% sel_lineages )
table(df_lin$lineage)
# refactor
df_lin$lineage = factor(df_lin$lineage)
sum(table(df_lin$lineage)) #{RESULT: Total number of samples for lineage}
table(df_lin$lineage)#{RESULT: No of samples within lineage}
length(unique(df_lin$mutationinformation))#{Result: No. of unique mutations the 4 lineages contribute to}
length(df_lin$mutationinformation)
# sanity checks
# FIXME
r1 = 2:7 # when merged_df2 used: because there is missing lineages
if(sum(table(plot_df$lineage)[r1]) == nrow(df_lin)) {
print ("sanity check passed: numbers match")
} else{
print("Error!: check your numbers")
}
u2 = unique(plot_df$mutationinformation)
u = unique(df_lin$mutationinformation)
check = u2[!u2%in%u]; print(check) #{Muts not present within selected lineages}
#%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
df <- df_lin
#%%%%%%%%%%%%%%%%%%%%%%%%%
rm(df_lin)
#******************
# generate distribution plot of lineages
#******************
# 2 : ggridges (good!)
my_ats = 15 # axis text size
my_als = 20 # axis label size
my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4'
#, 'Lineage 5', 'Lineage 6', 'Lineage 7'
)
names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4'
# , 'lineage5', 'lineage6', 'lineage7'
)
# check plot name
my_plot_name
# output svg
svg(plot_lineage_duet)
printFile = ggplot(df, aes(x = duet_scaled
, y = duet_outcome))+
#printFile=geom_density_ridges_gradient(
geom_density_ridges_gradient(aes(fill = ..x..)
, scale = 3
, size = 0.3 ) +
facet_wrap( ~lineage
, scales = "free"
# , switch = 'x'
, labeller = labeller(lineage = my_labels) ) +
coord_cartesian( xlim = c(-1, 1)
# , ylim = c(0, 6)
# , clip = "off"
) +
scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4")
, name = "DUET" ) +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
# , axis.text.y = element_text(size = my_ats
# , angle = 0
# , hjust = 1
# , vjust = 0)
, axis.text.y = element_blank()
, axis.title.x = element_blank()
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size = my_als)
, legend.text = element_text(size = 10)
, legend.title = element_text(size = my_als)
# , legend.position = c(0.3, 0.8)
# , legend.key.height = unit(1, 'mm')
)
print(printFile)
dev.off()
#=!=!=!=!=!=!=!
# COMMENT: Not much differences in the distributions
# when using merged_df2 or merged_df2_comp.
# Also, the lineage differences disappear when looking at all muts
# The pattern we are interested in is possibly only for dr_mutations
#=!=!=!=!=!=!=!
#===================================================
# COMPARING DISTRIBUTIONS: KS test
# run: "../KS_test_PS.R"