added cm_logo_skf.py and placeholder for splits
This commit is contained in:
parent
952cfeb4c0
commit
d812835713
4 changed files with 254 additions and 49 deletions
120
scripts/ml/combined_model/cm_logo_skf.py
Normal file
120
scripts/ml/combined_model/cm_logo_skf.py
Normal file
|
@ -0,0 +1,120 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
"""
|
||||||
|
Created on Wed Jun 29 19:44:06 2022
|
||||||
|
|
||||||
|
@author: tanu
|
||||||
|
"""
|
||||||
|
import sys, os
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import re
|
||||||
|
###############################################################################
|
||||||
|
homedir = os.path.expanduser("~")
|
||||||
|
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||||
|
sys.path
|
||||||
|
###############################################################################
|
||||||
|
#====================
|
||||||
|
# Import ML functions
|
||||||
|
#====================
|
||||||
|
from ml_data_combined import *
|
||||||
|
from MultClfs_logo_skf import *
|
||||||
|
#from GetMLData import *
|
||||||
|
#from SplitTTS import *
|
||||||
|
|
||||||
|
skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True,**rs)
|
||||||
|
|
||||||
|
#logo = LeaveOneGroupOut()
|
||||||
|
|
||||||
|
#%%
|
||||||
|
def CMLogoSkf(combined_df
|
||||||
|
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||||
|
, bts_genes = ["embb", "katg", "rpob", "pnca", "gid"]
|
||||||
|
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||||
|
, target_var = 'dst_mode'
|
||||||
|
, gene_group = 'gene_name'
|
||||||
|
, std_gene_omit = []
|
||||||
|
):
|
||||||
|
|
||||||
|
for bts_gene in bts_genes:
|
||||||
|
print('\n BTS gene:', bts_gene)
|
||||||
|
|
||||||
|
tr_gene_omit = std_gene_omit + [bts_gene]
|
||||||
|
n_tr_genes = (len(bts_genes) - (len(std_gene_omit)))
|
||||||
|
#n_total_genes = (len(bts_genes) - len(std_gene_omit))
|
||||||
|
n_total_genes = len(all_genes)
|
||||||
|
|
||||||
|
training_genesL = std_gene_omit + list(set(bts_genes) - set(tr_gene_omit))
|
||||||
|
#training_genesL = [element for element in bts_genes if element not in tr_gene_omit]
|
||||||
|
|
||||||
|
print('\nTotal genes: ', n_total_genes
|
||||||
|
,'\nTraining on:', n_tr_genes
|
||||||
|
,'\nTraining on genes:', training_genesL
|
||||||
|
, '\nOmitted genes:', tr_gene_omit
|
||||||
|
, '\nBlind test gene:', bts_gene)
|
||||||
|
|
||||||
|
tts_split_type = "logoBT_" + bts_gene
|
||||||
|
|
||||||
|
outFile = "/home/tanu/git/Data/ml_combined/" + str(n_tr_genes+1) + "genes_" + tts_split_type + ".csv"
|
||||||
|
print(outFile)
|
||||||
|
|
||||||
|
#-------
|
||||||
|
# training
|
||||||
|
#------
|
||||||
|
cm_training_df = combined_df[~combined_df['gene_name'].isin(tr_gene_omit)]
|
||||||
|
|
||||||
|
cm_X = cm_training_df.drop(cols_to_drop, axis=1, inplace=False)
|
||||||
|
#cm_y = cm_training_df.loc[:,'dst_mode']
|
||||||
|
cm_y = cm_training_df.loc[:, target_var]
|
||||||
|
|
||||||
|
|
||||||
|
gene_group = cm_training_df.loc[:,'gene_name']
|
||||||
|
|
||||||
|
print('\nTraining data dim:', cm_X.shape
|
||||||
|
, '\nTraining Target dim:', cm_y.shape)
|
||||||
|
|
||||||
|
if all(cm_X.columns.isin(cols_to_drop) == False):
|
||||||
|
print('\nChecked training df does NOT have Target var')
|
||||||
|
else:
|
||||||
|
sys.exit('\nFAIL: training data contains Target var')
|
||||||
|
|
||||||
|
#---------------
|
||||||
|
# BTS: genes
|
||||||
|
#---------------
|
||||||
|
cm_test_df = combined_df[combined_df['gene_name'].isin([bts_gene])]
|
||||||
|
|
||||||
|
cm_bts_X = cm_test_df.drop(cols_to_drop, axis = 1, inplace = False)
|
||||||
|
#cm_bts_y = cm_test_df.loc[:, 'dst_mode']
|
||||||
|
cm_bts_y = cm_test_df.loc[:, target_var]
|
||||||
|
|
||||||
|
print('\nTraining data dim:', cm_bts_X.shape
|
||||||
|
, '\nTraining Target dim:', cm_bts_y.shape)
|
||||||
|
|
||||||
|
|
||||||
|
#%%:Running Multiple models on LOGO with SKF
|
||||||
|
cD3_v2 = MultModelsCl_logo_skf(input_df = cm_X
|
||||||
|
, target = cm_y
|
||||||
|
, group = 'none'
|
||||||
|
, sel_cv = skf_cv
|
||||||
|
|
||||||
|
, blind_test_df = cm_bts_X
|
||||||
|
, blind_test_target = cm_bts_y
|
||||||
|
|
||||||
|
, tts_split_type = tts_split_type
|
||||||
|
|
||||||
|
, resampling_type = 'none' # default
|
||||||
|
, add_cm = True
|
||||||
|
, add_yn = True
|
||||||
|
, var_type = 'mixed'
|
||||||
|
|
||||||
|
, run_blind_test = True
|
||||||
|
, return_formatted_output = True
|
||||||
|
, random_state = 42
|
||||||
|
, n_jobs = 10
|
||||||
|
)
|
||||||
|
|
||||||
|
cD3_v2.to_csv(outFile)
|
||||||
|
|
||||||
|
#%%
|
||||||
|
CMLogoSkf(combined_df)
|
||||||
|
CMLogoSkf(combined_df, std_gene_omit=['alr'])
|
107
scripts/ml/combined_model/cm_ml_iterator.py
Executable file
107
scripts/ml/combined_model/cm_ml_iterator.py
Executable file
|
@ -0,0 +1,107 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
"""
|
||||||
|
Created on Wed Jun 29 20:29:36 2022
|
||||||
|
|
||||||
|
@author: tanu
|
||||||
|
"""
|
||||||
|
import sys, os
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import re
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
homedir = os.path.expanduser("~")
|
||||||
|
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||||
|
sys.path
|
||||||
|
###############################################################################
|
||||||
|
#====================
|
||||||
|
# Import ML functions
|
||||||
|
#====================
|
||||||
|
from MultClfs import *
|
||||||
|
from GetMLData import *
|
||||||
|
from SplitTTS import *
|
||||||
|
|
||||||
|
# param dict for getmldata()
|
||||||
|
combined_model_paramD = {'data_combined_model' : False
|
||||||
|
, 'use_or' : False
|
||||||
|
, 'omit_all_genomic_features': False
|
||||||
|
, 'write_maskfile' : False
|
||||||
|
, 'write_outfile' : False }
|
||||||
|
###############################################################################
|
||||||
|
#ml_genes = ["pncA", "embB", "katG", "rpoB", "gid"]
|
||||||
|
|
||||||
|
ml_gene_drugD = {'pncA' : 'pyrazinamide'
|
||||||
|
, 'embB' : 'ethambutol'
|
||||||
|
, 'katG' : 'isoniazid'
|
||||||
|
, 'rpoB' : 'rifampicin'
|
||||||
|
, 'gid' : 'streptomycin'
|
||||||
|
}
|
||||||
|
gene_dataD={}
|
||||||
|
split_types = ['70_30', '80_20', 'sl']
|
||||||
|
split_data_types = ['actual', 'complete']
|
||||||
|
|
||||||
|
for gene, drug in ml_gene_drugD.items():
|
||||||
|
print ('\nGene:', gene
|
||||||
|
, '\nDrug:', drug)
|
||||||
|
gene_low = gene.lower()
|
||||||
|
gene_dataD[gene_low] = getmldata(gene, drug
|
||||||
|
, data_combined_model = False # this means it doesn't include 'gene_name' as a feauture as a single gene-target shouldn't have it.
|
||||||
|
, use_or = False
|
||||||
|
, omit_all_genomic_features = False
|
||||||
|
, write_maskfile = False
|
||||||
|
, write_outfile = False)
|
||||||
|
|
||||||
|
for split_type in split_types:
|
||||||
|
for data_type in split_data_types:
|
||||||
|
out_filename = (gene.lower()+'_'+split_type+'_'+data_type+'.csv')
|
||||||
|
tempD=split_tts(gene_dataD[gene_low]
|
||||||
|
, data_type = data_type
|
||||||
|
, split_type = split_type
|
||||||
|
, oversampling = True
|
||||||
|
, dst_colname = 'dst'
|
||||||
|
, target_colname = 'dst_mode'
|
||||||
|
, include_gene_name = True
|
||||||
|
)
|
||||||
|
paramD = {
|
||||||
|
'baseline_paramD': { 'input_df' : tempD['X']
|
||||||
|
, 'target' : tempD['y']
|
||||||
|
, 'var_type' : 'mixed'
|
||||||
|
, 'resampling_type': 'none'}
|
||||||
|
, 'smnc_paramD': { 'input_df' : tempD['X_smnc']
|
||||||
|
, 'target' : tempD['y_smnc']
|
||||||
|
, 'var_type' : 'mixed'
|
||||||
|
, 'resampling_type' : 'smnc'}
|
||||||
|
, 'ros_paramD': { 'input_df' : tempD['X_ros']
|
||||||
|
, 'target' : tempD['y_ros']
|
||||||
|
, 'var_type' : 'mixed'
|
||||||
|
, 'resampling_type' : 'ros'}
|
||||||
|
, 'rus_paramD' : { 'input_df' : tempD['X_rus']
|
||||||
|
, 'target' : tempD['y_rus']
|
||||||
|
, 'var_type' : 'mixed'
|
||||||
|
, 'resampling_type' : 'rus'}
|
||||||
|
, 'rouC_paramD' : { 'input_df' : tempD['X_rouC']
|
||||||
|
, 'target' : tempD['y_rouC']
|
||||||
|
, 'var_type' : 'mixed'
|
||||||
|
, 'resampling_type': 'rouC'}
|
||||||
|
}
|
||||||
|
|
||||||
|
mmDD = {}
|
||||||
|
for k, v in paramD.items():
|
||||||
|
scoresD = MultModelsCl(**paramD[k]
|
||||||
|
, tts_split_type = split_type
|
||||||
|
, skf_cv = skf_cv
|
||||||
|
, blind_test_df = tempD['X_bts']
|
||||||
|
, blind_test_target = tempD['y_bts']
|
||||||
|
, add_cm = True
|
||||||
|
, add_yn = True
|
||||||
|
, return_formatted_output = True)
|
||||||
|
mmDD[k] = scoresD
|
||||||
|
|
||||||
|
# Extracting the dfs from within the dict and concatenating to output as one df
|
||||||
|
for k, v in mmDD.items():
|
||||||
|
out_wf= pd.concat(mmDD, ignore_index = True)
|
||||||
|
|
||||||
|
out_wf_f = out_wf.sort_values(by = ['resampling', 'source_data', 'MCC'], ascending = [True, True, False], inplace = False)
|
||||||
|
out_wf_f.to_csv(('/home/tanu/git/Data/ml_combined/genes/'+out_filename), index = False)
|
||||||
|
|
|
@ -89,14 +89,7 @@ scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||||
, 'jcc' : make_scorer(jaccard_score)
|
, 'jcc' : make_scorer(jaccard_score)
|
||||||
})
|
})
|
||||||
|
|
||||||
skf_cv = StratifiedKFold(n_splits = 10
|
|
||||||
#, shuffle = False, random_state= None)
|
|
||||||
, shuffle = True,**rs)
|
|
||||||
|
|
||||||
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
|
||||||
, n_repeats = 3
|
|
||||||
, **rs)
|
|
||||||
logo = LeaveOneGroupOut()
|
|
||||||
|
|
||||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||||
|
@ -160,7 +153,10 @@ def MultModelsCl_logo_skf(input_df
|
||||||
, add_yn = True # adds target var class numbers
|
, add_yn = True # adds target var class numbers
|
||||||
, var_type = ['numerical', 'categorical','mixed']
|
, var_type = ['numerical', 'categorical','mixed']
|
||||||
, run_blind_test = True
|
, run_blind_test = True
|
||||||
, return_formatted_output = True):
|
, return_formatted_output = True
|
||||||
|
, random_state = 42
|
||||||
|
, n_jobs = 10
|
||||||
|
, ):
|
||||||
|
|
||||||
'''
|
'''
|
||||||
@ param input_df: input features
|
@ param input_df: input features
|
||||||
|
@ -179,10 +175,24 @@ def MultModelsCl_logo_skf(input_df
|
||||||
Dict containing multiple classification scores for each model and mean of each Stratified Kfold including training
|
Dict containing multiple classification scores for each model and mean of each Stratified Kfold including training
|
||||||
'''
|
'''
|
||||||
|
|
||||||
# if group == 'none':
|
#%% Func globals
|
||||||
# sel_cv = skf_cv
|
rs = {'random_state': random_state}
|
||||||
# else:
|
njobs = {'n_jobs': n_jobs}
|
||||||
# group = 'none'
|
|
||||||
|
skf_cv = StratifiedKFold(n_splits = 10
|
||||||
|
#, shuffle = False, random_state= None)
|
||||||
|
, shuffle = True,**rs)
|
||||||
|
|
||||||
|
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
||||||
|
, n_repeats = 3
|
||||||
|
, **rs)
|
||||||
|
logo = LeaveOneGroupOut()
|
||||||
|
|
||||||
|
# select CV type:
|
||||||
|
if group == 'none':
|
||||||
|
sel_cv = skf_cv
|
||||||
|
else:
|
||||||
|
sel_cv = logo
|
||||||
#======================================================
|
#======================================================
|
||||||
# Determine categorical and numerical features
|
# Determine categorical and numerical features
|
||||||
#======================================================
|
#======================================================
|
||||||
|
@ -210,7 +220,7 @@ def MultModelsCl_logo_skf(input_df
|
||||||
#======================================================
|
#======================================================
|
||||||
# Specify multiple Classification Models
|
# Specify multiple Classification Models
|
||||||
#======================================================
|
#======================================================
|
||||||
models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
||||||
, ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True) )
|
, ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True) )
|
||||||
, ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
, ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||||
, ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
, ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||||
|
|
|
@ -63,40 +63,8 @@ else:
|
||||||
, '\nGot:', len(common_cols))
|
, '\nGot:', len(common_cols))
|
||||||
|
|
||||||
colnames_combined_df = combined_df.columns
|
colnames_combined_df = combined_df.columns
|
||||||
|
if 'gene_name' in colnames_combined_df:
|
||||||
|
print("\nGene name included")
|
||||||
|
else:
|
||||||
|
('\nGene name NOT included')
|
||||||
##############################################################################
|
##############################################################################
|
||||||
|
|
||||||
#%% split_tts(): func params
|
|
||||||
# (ml_input_data
|
|
||||||
# , data_type = ['actual', 'complete']
|
|
||||||
# , split_type = ['70_30', '80_20', 'sl']
|
|
||||||
# , oversampling = True
|
|
||||||
# , dst_colname = 'dst'# determine how to subset the actual vs reverse data
|
|
||||||
# , target_colname = 'dst_mode'
|
|
||||||
# , include_gene_name = True
|
|
||||||
# , k_smote = 5)
|
|
||||||
#%% split data into different data types
|
|
||||||
# #===================
|
|
||||||
# # 70/30
|
|
||||||
# #===================
|
|
||||||
# # actual
|
|
||||||
# tts_7030_paramD = {'data_type' : 'actual'
|
|
||||||
# , 'split_type' : '70_30'}
|
|
||||||
|
|
||||||
# # complete
|
|
||||||
# tts_cd_7030_paramD = {'data_type' : 'complete'
|
|
||||||
# , 'split_type' : '70_30'}
|
|
||||||
|
|
||||||
# # call split_tts()
|
|
||||||
# data_CM_7030D = split_tts(ml_input_data = combined_df
|
|
||||||
# , **tts_7030_paramD
|
|
||||||
# , oversampling = True
|
|
||||||
# , dst_colname = 'dst'
|
|
||||||
# , target_colname = 'dst_mode'
|
|
||||||
# , include_gene_name = False) # when not doing leave one group out
|
|
||||||
|
|
||||||
# data_cd_CM_7030D = split_tts(ml_input_data = combined_df
|
|
||||||
# , **tts_cd_7030_paramD
|
|
||||||
# , oversampling = True
|
|
||||||
# , dst_colname = 'dst'
|
|
||||||
# , target_colname = 'dst_mode'
|
|
||||||
# , include_gene_name = False)
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue