diff --git a/meta_data_analysis/pnca_data_extraction.py b/meta_data_analysis/pnca_data_extraction.py new file mode 100755 index 0000000..a47cec7 --- /dev/null +++ b/meta_data_analysis/pnca_data_extraction.py @@ -0,0 +1,981 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Tue Aug 6 12:56:03 2019 + +@author: tanu +""" + +# FIXME: include error checking to enure you only +# concentrate on positions that have structural info? + +#%% load libraries +################### +# load libraries +import os, sys +import pandas as pd +import numpy as np + +#from pandas.api.types import is_string_dtype +#from pandas.api.types import is_numeric_dtype + +#======================================================== +# TASK: extract ALL pncA_p. mutations from GWAS data +# Input data file has the following format: each row = unique sample id +# id,country,lineage,sublineage,drtype,pyrazinamide,dr_mutations_pyrazinamide,other_mutations_pyrazinamide... +# 0,sampleID,USA,lineage2,lineage2.2.1,Drug-resistant,0.0,WT,pncA_p.POS; pncA_c.POS... +# where multiple mutations and multiple mutation types are separated by ';'. We are interested in the +# protein coding region i.e mutation with the 'p.' format. + +# the script splits the mutations on the ';' and extracts protein coding muts only +# where each row is a separate mutation +# sample ids AND mutations are NOT unique, but the COMBINATION (sample id + mutation) = unique + +# output files: +# 0) pnca_common_ids.csv +# 1) pnca_ambiguous_muts.csv +# 2) pnca_mcsm_snps.csv +# 3) pnca_metadata.csv +# 4) pnca_all_muts_msa.csv +# 5) pnca_mutational_positons.csv +#======================================================== +#%% specify homedir as python doesn't recognise tilde +homedir = os.path.expanduser('~') + +# my working dir +os.getcwd() +os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis') +os.getcwd() + +# import aa dict +from reference_dict import my_aa_dict #CHECK DIR STRUC THERE! +#======================================================== + +#%% variable assignment: input and output paths & filenames + +drug = 'pyrazinamide' +gene = 'pncA' +gene_match = gene + '_p.' + +#======= +# input dir +#======= +#indir = 'git/Data/pyrazinamide/input/original' +indir = 'git/Data' + '/' + drug + '/' + 'input/original' +#========= +# output dir +#========= +# several output files +# output filenames in respective sections at the time of outputting files +#outdir = 'git/Data/pyrazinamide/output' +outdir = 'git/Data' + '/' + drug + '/' + 'output' + +#%%end of variable assignment for input and output files +#============================================================================== +#%% Read files + +in_filename = 'original_tanushree_data_v2.csv' +infile = homedir + '/' + indir + '/' + in_filename +print('Reading input master file:', infile) + +master_data = pd.read_csv(infile, sep = ',') + +# column names +#list(master_data.columns) + +# extract elevant columns to extract from meta data related to the pyrazinamide +meta_data = master_data[['id' + ,'country' + ,'lineage' + ,'sublineage' + ,'drtype' + , 'pyrazinamide' + , 'dr_mutations_pyrazinamide' + , 'other_mutations_pyrazinamide' + ]] + +del(master_data) + +# checks and results +total_samples = meta_data['id'].nunique() +print('RESULT: Total samples:', total_samples) +print('======================================================================') + +# counts NA per column +meta_data.isna().sum() +print('No. of NAs/column:' + '\n', meta_data.isna().sum()) +print('======================================================================') +# glance +meta_data.head() + +# equivalent of table in R +# pyrazinamide counts +meta_data.pyrazinamide.value_counts() +print('RESULT: Sus and Res samples:\n', meta_data.pyrazinamide.value_counts()) +print('======================================================================') + +# clear variables +del(indir, in_filename,infile) +#del(outdir) +#%% +# !!!IMPORTANT!!! sanity check: +# This is to find out how many samples have 1 and more than 1 mutation,so you +# can use it to check if your data extraction process for dr_muts +# and other_muts has worked correctly AND also to check the dim of the +# final formatted data. +# This will have: unique COMBINATION of sample id and pncA_p.mutations + +#======== +# First: counting pncA_p. mutations in dr_mutations_pyrazinamide column +#======== +print('Now counting WT & pncA_p. muts within the column: dr_mutations_pyrazinamide') + +# drop na and extract a clean df +clean_df = meta_data.dropna(subset=['dr_mutations_pyrazinamide']) + +# sanity check: count na +na_count = meta_data['dr_mutations_pyrazinamide'].isna().sum() + +if len(clean_df) == (total_samples - na_count): + print('PASS: clean_df extracted: length is', len(clean_df), + '\nNo.of NA s=', na_count, '/', total_samples) +else: + print('FAIL: dropping NA failed') +print('======================================================================') + +dr_pnca_count = 0 +wt = 0 +id_dr = [] +id2_dr = [] + +for i, id in enumerate(clean_df.id): +# print (i, id) +# id_dr.append(id) +# count_pnca_dr = clean_df.dr_mutations_pyrazinamide.iloc[i].count('pncA_p.') #works 2201 + count_pnca_dr = clean_df.dr_mutations_pyrazinamide.iloc[i].count(gene_match) #works 2201 + if count_pnca_dr > 0: + id_dr.append(id) + if count_pnca_dr > 1: + id2_dr.append(id) +# print(id, count_pnca_dr) + dr_pnca_count = dr_pnca_count + count_pnca_dr + count_wt = clean_df.dr_mutations_pyrazinamide.iloc[i].count('WT') + wt = wt + count_wt + +print('RESULTS:') +print('Total WT in dr_mutations_pyrazinamide:', wt) +print('Total matches of', gene_match, 'in dr_mutations_pyrazinamide:', dr_pnca_count) +print('Total samples with > 1', gene_match, 'muts in dr_mutations_pyrazinamide:', len(id2_dr) ) +print('======================================================================') + +del(i, id, wt, id2_dr, clean_df, na_count, count_pnca_dr, count_wt) + +#======== +# Second: counting pncA_p. mutations in dr_mutations_pyrazinamide column +#======== +print('Now counting WT & pncA_p. muts within the column: other_mutations_pyrazinamide') + +# drop na and extract a clean df +clean_df = meta_data.dropna(subset=['other_mutations_pyrazinamide']) + +# sanity check: count na +na_count = meta_data['other_mutations_pyrazinamide'].isna().sum() + +if len(clean_df) == (total_samples - na_count): + print('PASS: clean_df extracted: length is', len(clean_df), + '\nNo.of NA s=', na_count, '/', total_samples) +else: + print('FAIL: dropping NA failed') +print('======================================================================') + +other_pnca_count = 0 +wt_other = 0 +id_other = [] +id2_other = [] + +for i, id in enumerate(clean_df.id): +# print (i, id) +# id_other.append(id) +# count_pnca_other = clean_df.other_mutations_pyrazinamide.iloc[i].count('pncA_p.') + count_pnca_other = clean_df.other_mutations_pyrazinamide.iloc[i].count(gene_match) + if count_pnca_other > 0: + id_other.append(id) + if count_pnca_other > 1: + id2_other.append(id) +# print(id, count_pnca_other) + other_pnca_count = other_pnca_count + count_pnca_other + count_wt = clean_df.other_mutations_pyrazinamide.iloc[i].count('WT') + wt_other = wt_other + count_wt +print('RESULTS:') +print('Total WT in other_mutations_pyrazinamide:', wt_other) +print('Total matches of', gene_match, 'in other_mutations_pyrazinamide:', other_pnca_count) +print('Total samples with > 1', gene_match, 'muts in other_mutations_pyrazinamide:', len(id2_other) ) +print('======================================================================') + +print('Predicting total no. of rows in your curated df:', dr_pnca_count + other_pnca_count ) +expected_rows = dr_pnca_count + other_pnca_count + +del(i, id, wt_other, clean_df, na_count, id2_other, count_pnca_other, count_wt) + +#%% +############ +# extracting dr and other muts separately along with the common cols +############# +print('======================================================================') +print('Extracting dr_muts in a dr_mutations_pyrazinamide with other meta_data') +print('gene to extract:', gene_match ) + +#=============== +# dr mutations: extract pncA_p. entries with meta data and ONLY dr_muts col +#=============== +# FIXME: replace pyrazinamide with variable containing the drug name +# !!! important !!! +meta_data_dr = meta_data[['id' + ,'country' + ,'lineage' + ,'sublineage' + ,'drtype' + , 'pyrazinamide' + , 'dr_mutations_pyrazinamide' + ]] +print("expected dim should be:", len(meta_data), (len(meta_data.columns)-1) ) +print("actual dim:", meta_data_dr.shape ) +print('======================================================================') + +# Extract within this the gene of interest using string match +#meta_pnca_dr = meta_data.loc[meta_data.dr_mutations_pyrazinamide.str.contains('pncA_p.*', na = False)] +meta_pnca_dr = meta_data_dr.loc[meta_data_dr.dr_mutations_pyrazinamide.str.contains(gene_match, na = False)] + +dr_id = meta_pnca_dr['id'].unique() +print('RESULT: No. of samples with dr muts in pncA:', len(dr_id)) +print('checking RESULT:', + '\nexpected len =', len(id_dr), + '\nactual len =', len(meta_pnca_dr) ) + +if len(id_dr) == len(meta_pnca_dr): + print('PASS: lengths match') +else: + print('FAIL: length mismatch') +print('======================================================================') + +dr_id = pd.Series(dr_id) + +#================= +# other mutations: extract pncA_p. entries +#================== +print('======================================================================') +print('Extracting dr_muts in a other_mutations_pyrazinamide with other meta_data') +# FIXME: replace pyrazinamide with variable containing the drug name +# !!! important !!! +meta_data_other = meta_data[['id' + ,'country' + ,'lineage' + ,'sublineage' + ,'drtype' + , 'pyrazinamide' + , 'other_mutations_pyrazinamide' + ]] + +print("expected dim should be:", len(meta_data), (len(meta_data.columns)-1) ) +print("actual dim:", meta_data_other.shape ) +print('======================================================================') + +# Extract within this the gene of interest using string match +meta_pnca_other = meta_data_other.loc[meta_data_other.other_mutations_pyrazinamide.str.contains(gene_match, na = False)] + +other_id = meta_pnca_other['id'].unique() +print('RESULT: No. of samples with other muts:', len(other_id)) +print('checking RESULT:', + '\nexpected len =', len(id_other), + '\nactual len =', len(meta_pnca_other) ) + +if len(id_other) == len(meta_pnca_other): + print('PASS: lengths match') +else: + print('FAIL: length mismatch') +print('======================================================================') + +other_id = pd.Series(other_id) +#%% Find common IDs +print('Now extracting common_ids...') +common_mut_ids = dr_id.isin(other_id).sum() +print('RESULT: No. of common Ids:', common_mut_ids) + +# sanity checks +# check if True: should be since these are common +dr_id.isin(other_id).sum() == other_id.isin(dr_id).sum() + +# check if the 24 Ids that are common are indeed the same! +# bit of a tautology, but better safe than sorry! +common_ids = dr_id[dr_id.isin(other_id)] +common_ids = common_ids.reset_index() +common_ids.columns = ['index', 'id'] + +common_ids2 = other_id[other_id.isin(dr_id)] +common_ids2 = common_ids2.reset_index() +common_ids2.columns = ['index', 'id2'] + +# should be True +print(common_ids['id'].equals(common_ids2['id2'])) + +# good sanity check: use it later to check pnca_sample_counts +expected_pnca_samples = ( len(meta_pnca_dr) + len(meta_pnca_other) - common_mut_ids ) +print("expected no. of pnca samples:", expected_pnca_samples) +print('======================================================================') +#%% write file +#print(outdir) +out_filename0 = gene.lower() + '_' + 'common_ids.csv' +outfile0 = homedir + '/' + outdir + '/' + out_filename0 + +#FIXME: CHECK line len(common_ids) +print('Writing file: common ids:\n', + '\nFilename:', out_filename0, + '\nPath:', homedir +'/'+ outdir, + '\nExpected no. of rows:', len(common_ids) ) + +common_ids.to_csv(outfile0) +print('======================================================================') +del(out_filename0) + + +# clear variables +del(dr_id, other_id, meta_data_dr, meta_data_other, common_ids, common_mut_ids, common_ids2) + +#%% Now extract "all" pncA mutations: i.e 'pncA_p.*' +print("extracting all pncA mutations from dr_ and other_ cols using string match:", gene_match) +#meta_pnca_all = meta_data.loc[meta_data.dr_mutations_pyrazinamide.str.contains(gene_match) | meta_data.other_mutations_pyrazinamide.str.contains(gene_match) ] +meta_pnca_all = meta_data.loc[meta_data.dr_mutations_pyrazinamide.str.contains(gene_match, na = False) | meta_data.other_mutations_pyrazinamide.str.contains(gene_match, na = False) ] +print('======================================================================') + +extracted_pnca_samples = meta_pnca_all['id'].nunique() +print("RESULT: actual no. of pnca samples extracted:", extracted_pnca_samples) +print('======================================================================') + +# sanity check: length of pnca samples +print('Performing sanity check:') +if extracted_pnca_samples == expected_pnca_samples: + print('No. of pnca samples:', len(meta_pnca_all), + '\nPASS: expected & actual no. of pnca samples match') +else: + print("FAIL: Debug please!") +print('======================================================================') + +# count NA in pyrazinamide column +pnca_na = meta_pnca_all['pyrazinamide'].isna().sum() +print("No. of pnca samples without pza testing i.e NA in pza column:",pnca_na) + +# use it later to check number of complete samples from LF data +comp_pnca_samples = len(meta_pnca_all) - pnca_na +print("comp pnca samples tested for pza:", comp_pnca_samples) +print('======================================================================') + +# Comment: This is still dirty data since these +# are samples that have pncA_p. muts, but can have others as well +# since the format for mutations is mut1; mut2, etc. +print('This is still dirty data: samples have pncA_p. muts, but may have others as well', + '\nsince the format for mutations is mut1; mut2, etc.') +print('======================================================================') + +#%% tidy_split():Function to split mutations on specified delimiter: ';' +#https://stackoverflow.com/questions/41476150/removing-space-from-dataframe-columns-in-pandas + +print('Performing tidy_spllit(): to separate the mutations into indivdual rows') +# define the split function +def tidy_split(df, column, sep='|', keep=False): + """ + Split the values of a column and expand so the new DataFrame has one split + value per row. Filters rows where the column is missing. + + Params + ------ + df : pandas.DataFrame + dataframe with the column to split and expand + column : str + the column to split and expand + sep : str + the string used to split the column's values + keep : bool + whether to retain the presplit value as it's own row + + Returns + ------- + pandas.DataFrame + Returns a dataframe with the same columns as `df`. + """ + indexes = list() + new_values = list() + #df = df.dropna(subset=[column])#!!!!-----see this incase you need to uncomment based on use case + for i, presplit in enumerate(df[column].astype(str)): + values = presplit.split(sep) + if keep and len(values) > 1: + indexes.append(i) + new_values.append(presplit) + for value in values: + indexes.append(i) + new_values.append(value) + new_df = df.iloc[indexes, :].copy() + new_df[column] = new_values + return new_df + +#%% end of tidy_split() +#========= +# DF1: dr_mutations_pyrazinamide +#========= +######## +# tidy_split(): on 'dr_mutations_pyrazinamide' column and remove leading white spaces +######## +col_to_split1 = 'dr_mutations_pyrazinamide' +print ('Firstly, applying tidy split on dr df:', meta_pnca_dr.shape, + '\ncolumn name:', col_to_split1) +print('======================================================================') +# apply tidy_split() +dr_WF0 = tidy_split(meta_pnca_dr, col_to_split1, sep = ';') +# remove leading white space else these are counted as distinct mutations as well +dr_WF0['dr_mutations_pyrazinamide'] = dr_WF0['dr_mutations_pyrazinamide'].str.lstrip() + +# extract only the samples/rows with pncA_p. +dr_pnca_WF0 = dr_WF0.loc[dr_WF0.dr_mutations_pyrazinamide.str.contains(gene_match)] + +print('lengths after tidy split and extracting', gene_match, 'muts:', + '\nold length:' , len(meta_pnca_dr), + '\nlen after split:', len(dr_WF0), + '\ndr_pnca_WF0 length:', len(dr_pnca_WF0), + '\nexpected len:', dr_pnca_count) + +if len(dr_pnca_WF0) == dr_pnca_count: + print('PASS: length of dr_pnca_WF0 match with expected length') +else: + print('FAIL: lengths mismatch') + +print('======================================================================') + +# count the freq of "dr_muts" samples +dr_muts_df = dr_pnca_WF0 [['id', 'dr_mutations_pyrazinamide']] +print("dim of dr_muts_df:", dr_muts_df.shape) + +# add freq column +dr_muts_df['dr_sample_freq'] = dr_muts_df.groupby('id')['id'].transform('count') +#dr_muts_df['dr_sample_freq'] = dr_muts_df.loc[dr_muts_df.groupby('id')].transform('count') +print("revised dim of dr_muts_df:", dr_muts_df.shape) + +c1 = dr_muts_df.dr_sample_freq.value_counts() +print("counting no. of sample frequency\n:", c1) +print('======================================================================') + +# sanity check: length of pnca samples +if len(dr_pnca_WF0) == c1.sum(): + print('PASS: WF data has expected length', + '\nlength of dr_pnca WFO:', c1.sum() ) +else: + print("FAIL: Debug please!") + +print('======================================================================') + +#!!! Important !!! +# Assign "column name" on which split was performed as an extra column +# This is so you can identify if mutations are dr_type or other in the final df +dr_df = dr_pnca_WF0.assign(mutation_info = 'dr_mutations_pyrazinamide') +print("dim of dr_df:", dr_df.shape) +print('======================================================================') +print('End of tidy split() on dr_muts, and added an extra column relecting mut_category') +print('======================================================================') + +#%% +#========= +# DF2: other_mutations_pyrazinamdie +#========= +######## +# tidy_split(): on 'other_mutations_pyrazinamide' column and remove leading white spaces +######## +col_to_split2 = 'other_mutations_pyrazinamide' +print ("applying second tidy split separately on df:", meta_pnca_other.shape, '\n' + , "column name:", col_to_split2) +print('======================================================================') + +# apply tidy_split() +other_WF1 = tidy_split(meta_pnca_other, col_to_split2, sep = ';') +# remove the leading white spaces in the column +other_WF1['other_mutations_pyrazinamide'] = other_WF1['other_mutations_pyrazinamide'].str.strip() + +# extract only the samples/rows with pncA_p. +other_pnca_WF1 = other_WF1.loc[other_WF1.other_mutations_pyrazinamide.str.contains(gene_match)] + +print('lengths after tidy split and extracting', gene_match, 'muts:', + '\nold length:' , len(meta_pnca_other), + '\nlen after split:', len(other_WF1), + '\nother_pnca_WF1 length:', len(other_pnca_WF1), + '\nexpected len:', other_pnca_count) + +if len(other_pnca_WF1) == other_pnca_count: + print('PASS: length of dr_pnca_WF0 match with expected length') +else: + print('FAIL: lengths mismatch') + +print('======================================================================') +# count the freq of "other muts" samples +other_muts_df = other_pnca_WF1 [['id', 'other_mutations_pyrazinamide']] +print("dim of other_muts_df:", other_muts_df.shape) + +# add freq column +other_muts_df['other_sample_freq'] = other_muts_df.groupby('id')['id'].transform('count') +print("revised dim of other_muts_df:", other_muts_df.shape) + +c2 = other_muts_df.other_sample_freq.value_counts() +print("counting no. of sample frequency\n:", c2) +print('======================================================================') +# sanity check: length of pnca samples +if len(other_pnca_WF1) == c2.sum(): + print('PASS: WF data has expected length', + '\nlength of other_pnca WFO:', c2.sum() ) +else: + print("FAIL: Debug please!") +print('======================================================================') + +#!!! Important !!! +# Assign "column name" on which split was performed as an extra column +# This is so you can identify if mutations are dr_type or other in the final df +other_df = other_pnca_WF1.assign(mutation_info = 'other_mutations_pyrazinamide') +print("dim of other_df:", other_df.shape) +print('======================================================================') +print('End of tidy split() on other_muts, and added an extra column relecting mut_category') +print('======================================================================') +#%% +#========== +# Concatentating the two dfs: equivalent of rbind in R +#========== +#!!! important !!! +# change column names to allow concat: +# dr_muts.. & other_muts : "mutation" +print('Now concatenating the two dfs by row') + +dr_df.columns +dr_df.rename(columns = {'dr_mutations_pyrazinamide': 'mutation'}, inplace = True) +dr_df.columns + +other_df.columns +other_df.rename(columns = {'other_mutations_pyrazinamide': 'mutation'}, inplace = True) +other_df.columns + +print('======================================================================') +print('Now appending the two dfs:', + '\ndr_df dim:', dr_df.shape, + '\nother_df dim:', other_df.shape, + '\ndr_df length:', len(dr_df), + '\nother_df length:', len(other_df), + '\nexpected length:', len(dr_df) + len(other_df) ) +print('======================================================================') + +# checking colnames before concat +print("checking colnames BEFORE concatenating the two dfs...") +if (set(dr_df.columns) == set(other_df.columns)): + print('PASS: column names match necessary for merging two dfs') +else: + print("FAIL: Debug please!") + +# concatenate (axis = 0): Rbind +pnca_LF0 = pd.concat([dr_df, other_df], ignore_index = True, axis = 0) + +# checking colnames and length after concat +print("checking colnames AFTER concatenating the two dfs...") +if (set(dr_df.columns) == set(pnca_LF0.columns)): + print('PASS: column names match') +else: + print("FAIL: Debug please!") + +print("checking length AFTER concatenating the two dfs...") + +if len(pnca_LF0) == len(dr_df) + len(other_df): + print("PASS:length of df after concat match") +else: + print("FAIL: length mismatch") +print('======================================================================') +#%% +########### +# This is hopefully clean data, but just double check +# Filter LF data so that you only have +# mutations corresponding to pncA_p.* (string match pattern) +# this will be your list you run OR calcs +########### +print('length of pnca_LF0:', len(pnca_LF0), + '\nThis should be what you need. But just double check and extract', gene_match, + '\nfrom LF0 (concatenated data)') + +print('using string match:', gene_match) + +print('Double checking and creating df: pnca_LF1') +pnca_LF1 = pnca_LF0[pnca_LF0['mutation'].str.contains(gene_match)] + +if len(pnca_LF0) == len(pnca_LF1): + print('PASS: length of pnca_LF0 and pnca_LF1 match', + '\nconfirming extraction and concatenating worked correctly') +else: + print('FAIL: BUT NOT FATAL!', + '\npnca_LF0 and pnca_LF1 lengths differ', + '\nsuggesting error in extraction process' + ' use pnca_LF1 for downstreama analysis') +print('======================================================================') +print('length of dfs pre and post processing...', + '\npnca WF data (unique samples in each row):', extracted_pnca_samples, + '\npnca LF data (unique mutation in each row):', len(pnca_LF1)) +print('======================================================================') +#%% +# final sanity check +print('Verifying whether extraction process worked correctly...') +if len(pnca_LF1) == expected_rows: + print('PASS: extraction process performed correctly', + '\nexpected length:', expected_rows, + '\ngot:', len(pnca_LF1), + '\nRESULT: Total no. of mutant sequences for logo plot:', len(pnca_LF1) ) + +else: + print('FAIL: extraction process has bugs', + '\nexpected length:', expected_rows, + '\ngot:', len(pnca_LF1), + '\Debug please') +#%% +print('Perfmorning some more sanity checks...') +# From LF1: +# no. of unique muts +distinct_muts = pnca_LF1.mutation.value_counts() +print("Distinct mutations:", len(distinct_muts)) + +# no. of samples contributing the unique muta +pnca_LF1.id.nunique() +print("No.of samples contributing to distinct muts:", pnca_LF1.id.nunique() ) + +# no. of dr and other muts +mut_grouped = pnca_LF1.groupby('mutation_info').mutation.nunique() +print("No.of unique dr and other muts:", pnca_LF1.groupby('mutation_info').mutation.nunique() ) + +# sanity check +if len(distinct_muts) == mut_grouped.sum() : + print("PASS:length of LF1 is as expected ") +else: + print('FAIL: Mistmatch in count of muts', + '\nexpected count:', len(distinct_muts), + '\nactual count:', mut_grouped.sum(), + '\nmuts should be distinct within dr* and other* type', + '\ninspecting ...') + muts_split = list(pnca_LF1.groupby('mutation_info')) + dr_muts = muts_split[0][1].mutation + other_muts = muts_split[1][1].mutation +# print('splitting muts by mut_info:', muts_split) + print('no.of dr_muts samples:', len(dr_muts)) + print('no. of other_muts samples', len(other_muts)) +#%% +# !!! IMPORTANT !!!! +# sanity check: There should not be any common muts +# i.e the same mutation cannot be classed as a 'drug' AND 'others' +if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0: + print('WARNING: Ambiguous muts detected in dr_ and other_ mutation category') +else: + print('PASS: NO ambiguous muts detected', + '\nMuts are unique to dr_ and other_ mutation class') + +# inspect dr_muts and other muts +if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0: + print('Finding ambiguous muts...', + '\n==========================================================', + '\nTotal no. of samples in dr_muts present in other_muts:', dr_muts.isin(other_muts).sum(), + '\nThese are:\n', dr_muts[dr_muts.isin(other_muts)], + '\n==========================================================', + '\nTotal no. of samples in other_muts present in dr_muts:', other_muts.isin(dr_muts).sum(), + '\nThese are:\n', other_muts[other_muts.isin(dr_muts)], + '\n==========================================================') +else: + print('Error: ambiguous muts present, but extraction failed. Debug!') + +print('======================================================================') +print('Counting no. of ambiguous muts...') + +if dr_muts[dr_muts.isin(other_muts)].nunique() == other_muts[other_muts.isin(dr_muts)].nunique(): + common_muts = dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist() + print('No. of ambigiuous muts detected:'+ str(len(common_muts)), + 'list of ambiguous mutations (see below):', *common_muts, sep = '\n') +else: + print('Error: ambiguous muts detected, but extraction failed. Debug!', + '\nNo. of ambiguous muts in dr:', len(dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist() ), + '\nNo. of ambiguous muts in other:', len(other_muts[other_muts.isin(dr_muts)].value_counts().keys().tolist())) + +#%% clear variables +del(id_dr, id_other, meta_data, meta_pnca_dr, meta_pnca_other, mut_grouped, muts_split, other_WF1, other_df, other_muts_df, other_pnca_count, pnca_LF0, pnca_na) + +del(c1, c2, col_to_split1, col_to_split2, comp_pnca_samples, dr_WF0, dr_df, dr_muts_df, dr_pnca_WF0, dr_pnca_count, expected_pnca_samples, other_pnca_WF1) + +#%% end of data extraction and some files writing. Below are some more files writing. + +#%%: write file: ambiguous muts +# uncomment as necessary +#print(outdir) +#dr_muts.to_csv('dr_muts.csv', header = True) +#other_muts.to_csv('other_muts.csv', header = True) + +out_filename1 = gene.lower() + '_' + 'ambiguous_muts.csv' +outfile1 = homedir + '/' + outdir + '/' + out_filename1 +print('Writing file: ambiguous muts...', + '\nFilename:', out_filename1, + '\nPath:', homedir +'/'+ outdir) + +#common_muts = ['pncA_p.Val180Phe','pncA_p.Gln10Pro'] # test +inspect = pnca_LF1[pnca_LF1['mutation'].isin(common_muts)] +inspect.to_csv(outfile1) + +print('Finished writing:', out_filename1, '\nExpected no. of rows (no. of samples with the ambiguous muts present):', dr_muts.isin(other_muts).sum() + other_muts.isin(dr_muts).sum()) +print('======================================================================') +del(out_filename1) + + +#%% +#=========== +# Split 'mutation' column into three: wild_type, position and +# mutant_type separately. Then map three letter code to one using +# reference_dict. +# First: Import reference dict +# Second: convert to mutation to lowercase for compatibility with dict +#=========== +from reference_dict import my_aa_dict # CHECK DIR STRUC THERE! +pnca_LF1['mutation'] = pnca_LF1.loc[:, 'mutation'].str.lower() +#======= +# Iterate through the dict, create a lookup dict i.e +# lookup_dict = {three_letter_code: one_letter_code}. +# lookup dict should be the key and the value (you want to create a column for) +# Then use this to perform the mapping separetly for wild type and mutant cols. +# The three letter code is extracted using a string match match from the dataframe and then converted +# to 'pandas series'since map only works in pandas series +#======= +lookup_dict = dict() +for k, v in my_aa_dict.items(): + lookup_dict[k] = v['one_letter_code'] + wt = pnca_LF1['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on + pnca_LF1['wild_type'] = wt.map(lookup_dict) + mut = pnca_LF1['mutation'].str.extract('\d+(\w{3})$').squeeze() + pnca_LF1['mutant_type'] = mut.map(lookup_dict) + +# extract position info from mutation column separetly using string match +pnca_LF1['position'] = pnca_LF1['mutation'].str.extract(r'(\d+)') + +# clear variables +del(k, v, wt, mut, lookup_dict) +print('======================================================================') +#========= +# iterate through the dict, create a lookup dict that i.e +# lookup_dict = {three_letter_code: aa_prop_water} +# Do this for both wild_type and mutant as above. +#========= +# initialise a sub dict that is lookup dict for three letter code to aa prop +lookup_dict = dict() + +for k, v in my_aa_dict.items(): + lookup_dict[k] = v['aa_prop_water'] + #print(lookup_dict) + wt = pnca_LF1['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on + pnca_LF1['wt_prop_water'] = wt.map(lookup_dict) + mut = pnca_LF1['mutation'].str.extract('\d+(\w{3})$').squeeze() + pnca_LF1['mut_prop_water'] = mut.map(lookup_dict) + +# added two more cols + +# clear variables +del(k, v, wt, mut, lookup_dict) +print('======================================================================') +#======== +# iterate through the dict, create a lookup dict that i.e +# lookup_dict = {three_letter_code: aa_prop_polarity} +# Do this for both wild_type and mutant as above. +#========= +# initialise a sub dict that is lookup dict for three letter code to aa prop +lookup_dict = dict() + +for k, v in my_aa_dict.items(): + lookup_dict[k] = v['aa_prop_polarity'] + #print(lookup_dict) + wt = pnca_LF1['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on + pnca_LF1['wt_prop_polarity'] = wt.map(lookup_dict) + mut = pnca_LF1['mutation'].str.extract(r'\d+(\w{3})$').squeeze() + pnca_LF1['mut_prop_polarity'] = mut.map(lookup_dict) + +# added two more cols + +# clear variables +del(k, v, wt, mut, lookup_dict) +print('======================================================================') + +#======== +# iterate through the dict, create a lookup dict that i.e +# lookup_dict = {three_letter_code: aa_taylor} +# Do this for both wild_type and mutant as above. +# caution: taylor mapping will create a list within a column +#========= +#lookup_dict = dict() + +#for k, v in my_aa_dict.items(): +# lookup_dict[k] = v['aa_taylor'] +# #print(lookup_dict) +# wt = pnca_LF1['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on +# pnca_LF1['wt_taylor'] = wt.map(lookup_dict) +# mut = pnca_LF1['mutation'].str.extract(r'\d+(\w{3})$').squeeze() +# pnca_LF1['mut_taylor'] = mut.map(lookup_dict) + +# added two more cols +# clear variables +#del(k, v, wt, mut, lookup_dict) +#print('======================================================================') + +#======== +# iterate through the dict, create a lookup dict that i.e +# lookup_dict = {three_letter_code: aa_calcprop} +# Do this for both wild_type and mutant as above. +#========= +lookup_dict = dict() + +for k, v in my_aa_dict.items(): + lookup_dict[k] = v['aa_calcprop'] + #print(lookup_dict) + wt = pnca_LF1['mutation'].str.extract('pnca_p.(\w{3})').squeeze() # converts to a series that map works on + pnca_LF1['wt_calcprop'] = wt.map(lookup_dict) + mut = pnca_LF1['mutation'].str.extract(r'\d+(\w{3})$').squeeze() + pnca_LF1['mut_calcprop'] = mut.map(lookup_dict) + +# added two more cols +# clear variables +del(k, v, wt, mut, lookup_dict) +print('======================================================================') +######## +# combine the wild_type+poistion+mutant_type columns to generate +# Mutationinformation (matches mCSM output field) +# Remember to use .map(str) for int col types to allow string concatenation +######### +pnca_LF1['Mutationinformation'] = pnca_LF1['wild_type'] + pnca_LF1.position.map(str) + pnca_LF1['mutant_type'] +print('Created column: Mutationinformation') +print('======================================================================') +#%% Write file: mCSM muts +snps_only = pd.DataFrame(pnca_LF1['Mutationinformation'].unique()) +snps_only.head() +# assign column name +snps_only.columns = ['Mutationinformation'] + +# count how many positions this corresponds to +pos_only = pd.DataFrame(pnca_LF1['position'].unique()) + +print('Checking NA in snps...')# should be 0 +if snps_only.Mutationinformation.isna().sum() == 0: + print ('PASS: NO NAs/missing entries for SNPs') +else: + print('FAIL: SNP has NA, Possible mapping issues from dict?', + '\nDebug please!') +print('======================================================================') + +out_filename2 = gene.lower() + '_' + 'mcsm_snps.csv' +outfile2 = homedir + '/' + outdir + '/' + out_filename2 + +print('Writing file: mCSM style muts', + '\nmutation format (SNP): {Wt}{Mut}', + '\nNo. of distinct muts:', len(snps_only), + '\nNo. of distinct positions:', len(pos_only), + '\nFilename:', out_filename2, + '\nPath:', homedir +'/'+ outdir) + +snps_only.to_csv(outfile2, header = False, index = False) + +print('Finished writing:', out_filename2, + '\nNo. of rows:', len(snps_only) ) +print('======================================================================') +del(out_filename2) + + +#%% Write file: pnca_metadata (i.e pnca_LF1) +# where each row has UNIQUE mutations NOT unique sample ids +out_filename3 = gene.lower() + '_' + 'metadata.csv' +outfile3 = homedir + '/' + outdir + '/' + out_filename3 +print('Writing file: LF formatted data', + '\nFilename:', out_filename3, + '\nPath:', homedir +'/'+ outdir) + +pnca_LF1.to_csv(outfile3, header = True, index = False) +print('Finished writing:', out_filename3, + '\nNo. of rows:', len(pnca_LF1), + '\nNo. of cols:', len(pnca_LF1.columns) ) +print('======================================================================') +del(out_filename3) + + +#%% write file: mCSM style but with repitions for MSA and logo plots +all_muts_msa = pd.DataFrame(pnca_LF1['Mutationinformation']) +all_muts_msa.head() +# assign column name +all_muts_msa.columns = ['Mutationinformation'] + +# make sure it is string +all_muts_msa.columns.dtype + +# sort the column +all_muts_msa_sorted = all_muts_msa.sort_values(by = 'Mutationinformation') + +# create an extra column with protein name +all_muts_msa_sorted = all_muts_msa_sorted.assign(fasta_name = '3PL1') +all_muts_msa_sorted.head() + +# rearrange columns so the fasta name is the first column (required for mutate.script) +all_muts_msa_sorted = all_muts_msa_sorted[['fasta_name', 'Mutationinformation']] +all_muts_msa_sorted.head() + +print('Checking NA in snps...')# should be 0 +if all_muts_msa.Mutationinformation.isna().sum() == 0: + print ('PASS: NO NAs/missing entries for SNPs') +else: + print('FAIL: SNP has NA, Possible mapping issues from dict?', + '\nDebug please!') +print('======================================================================') + +out_filename4 = gene.lower() + '_' + 'all_muts_msa.csv' +outfile4 = homedir + '/' + outdir + '/' + out_filename4 + +print('Writing file: mCSM style muts for msa', + '\nmutation format (SNP): {Wt}{Mut}', + '\nNo.of lines of msa:', len(all_muts_msa), + '\nFilename:', out_filename4, + '\nPath:', homedir +'/'+ outdir) + +all_muts_msa_sorted.to_csv(outfile4, header = False, index = False) + +print('Finished writing:', out_filename4, + '\nNo. of rows:', len(all_muts_msa) ) +print('======================================================================') +del(out_filename4) + + +#%% write file for mutational positions +# count how many positions this corresponds to +pos_only = pd.DataFrame(pnca_LF1['position'].unique()) +# assign column name +pos_only.columns = ['position'] +# make sure dtype of column position is int or numeric and not string +pos_only.position.dtype +pos_only['position'] = pos_only['position'].astype(int) +pos_only.position.dtype + +# sort by position value +pos_only_sorted = pos_only.sort_values(by = 'position', ascending = True) + +out_filename5 = gene.lower() + '_' + 'mutational_positons.csv' +outfile5 = homedir + '/' + outdir + '/' + out_filename5 + +print('Writing file: mutational positions', + '\nNo. of distinct positions:', len(pos_only_sorted), + '\nFilename:', out_filename5, + '\nPath:', homedir +'/'+ outdir) + +pos_only_sorted.to_csv(outfile5, header = True, index = False) + +print('Finished writing:', out_filename5, + '\nNo. of rows:', len(pos_only_sorted) ) +print('======================================================================') +del(out_filename5) + + +#%% end of script +print('======================================================================') +print(u'\u2698' * 50, + '\nEnd of script: Data extraction and writing files' + '\n' + u'\u2698' * 50 ) +#%%