added consistent style scripts to format kd & rd values

This commit is contained in:
Tanushree Tunstall 2020-07-09 14:08:27 +01:00
parent e4a7deae7b
commit d3d82623d2
2 changed files with 458 additions and 0 deletions

255
scripts/kd_df.py Executable file
View file

@ -0,0 +1,255 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
#=======================================================================
# Task: Hydrophobicity (Kd) values for amino acid sequence using the
# Kyt&-Doolittle.
# Same output as using the expasy server (link below)
# Input: fasta file
# Output: csv file with
# useful links
# https://biopython.org/DIST/docs/api/Bio.SeqUtils.ProtParamData-pysrc.html
# https://web.expasy.org/protscale/pscale/protscale_help.html
#=======================================================================
#%% load packages
import sys, os
import argparse
import pandas as pd
import numpy as np
from pylab import *
from Bio.SeqUtils import ProtParamData
from Bio.SeqUtils.ProtParam import ProteinAnalysis
from Bio import SeqIO
#from Bio.Alphabet.IUPAC import IUPACProtein
import pprint as pp
#=======================================================================
#%% specify homedir and curr dir
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
#=======================================================================
#%% command line args
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help='drug name', default = None)
arg_parser.add_argument('-g', '--gene', help='gene name', default = None)
#arg_parser.add_argument('-p', '--plot', help='show plot', action='store_true')
arg_parser.add_argument('--datadir', help = 'Data Directory. By default, it assmumes homedir + git/Data')
arg_parser.add_argument('-i', '--input_dir', help = 'Input dir containing pdb files. By default, it assmumes homedir + <drug> + input')
arg_parser.add_argument('-o', '--output_dir', help = 'Output dir for results. By default, it assmes homedir + <drug> + output')
arg_parser.add_argument('-fasta','--fasta_file', help = 'fasta file. By default, it assmumes a file called <gene>.fasta.txt in input_dir')
arg_parser.add_argument('--debug', action='store_true', help = 'Debug Mode')
args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output
#drug = 'pyrazinamide'
#gene = 'pncA'
drug = args.drug
gene = args.gene
gene_match = gene + '_p.'
data_dir = args.datadir
indir = args.input_dir
outdir = args.output_dir
fasta_filename = args.fasta_file
#plot = args.plot
DEBUG = args.debug
#============
# directories
#============
if data_dir:
datadir = data_dir
else:
datadir = homedir + '/' + 'git/Data'
if not indir:
indir = datadir + '/' + drug + '/' + 'input'
if not outdir:
outdir = datadir + '/' + drug + '/' + 'output'
#=======
# input
#=======
if fasta_filename:
in_filename_fasta = fasta_filename
else:
in_filename_fasta = gene.lower() + '.fasta.txt'
infile_fasta = indir + '/' + in_filename_fasta
print('Input fasta file:', infile_fasta
, '\n============================================================')
#=======
# output
#=======
out_filename_kd = gene.lower() + '_kd.csv'
outfile_kd = outdir + '/' + out_filename_kd
print('Output file:', outfile_kd
, '\n=============================================================')
#%% end of variable assignment for input and output files
#=======================================================================
#%% kd values from fasta file and output csv
def kd_to_csv(inputfasta, outputkdcsv, windowsize = 3):
"""
Calculate kd (hydropathy values) from input fasta file
@param inputfasta: fasta file
@type: string
@param outputkdcsv: csv file with kd values
@type: string
@param windowsize: windowsize to perform KD calcs on (Kyte&-Doolittle)
@type: numeric
@return: none, writes kd values df as csv
"""
#========================
# read input fasta file
#========================
fh = open(inputfasta)
for record in SeqIO.parse(fh, 'fasta'):
id = record.id
seq = record.seq
num_residues = len(seq)
fh.close()
sequence = str(seq)
X = ProteinAnalysis(sequence)
#===================
# calculate KD values: same as the expasy server
#===================
my_window = windowsize
offset = round((my_window/2)-0.5)
# edge weight is set to default (100%)
kd_values = (X.protein_scale(ProtParamData.kd , window = my_window))
# sanity checks
print('Sequence Length:', num_residues)
print('kd_values Length:',len(kd_values))
print('Window Length:', my_window)
print('Window Offset:', offset)
print('=================================================================')
print('Checking:len(kd values) is as expected for the given window size & offset...')
expected_length = num_residues - (my_window - offset)
if len(kd_values) == expected_length:
print('PASS: expected and actual length of kd values match')
else:
print('FAIL: length mismatch'
,'\nExpected length:', expected_length
,'\nActual length:', len(kd_values)
, '\n=========================================================')
#===================
# creating two dfs
#===================
# 1) aa sequence and 2) kd_values. Then reset index for each df
# which will allow easy merging of the two dfs.
# df1: df of aa seq with index reset to start from 1
# (reflective of the actual aa position in a sequence)
# Name column of wt as 'wild_type' to be the same name used
# in the file required for merging later.
dfSeq = pd.DataFrame({'wild_type_kd':list(sequence)})
dfSeq.index = np.arange(1, len(dfSeq) + 1) # python is not inclusive
# df2: df of kd_values with index reset to start from offset + 1 and
# subsequent matched length of the kd_values
dfVals = pd.DataFrame({'kd_values':kd_values})
dfVals.index = np.arange(offset + 1, len(dfVals) + 1 + offset)
# sanity checks
max(dfVals['kd_values'])
min(dfVals['kd_values'])
#===================
# concatenating dfs
#===================
# Merge the two on index
# (as these are now reflective of the aa position numbers): df1 and df2
# This will introduce NaN where there is missing values. In our case this
# will be 2 (first and last ones based on window size and offset)
kd_df = pd.concat([dfSeq, dfVals], axis = 1)
#============================
# renaming index to position
#============================
kd_df = kd_df.rename_axis('position')
kd_df.head
print('Checking: position col i.e. index should be numeric')
if kd_df.index.dtype == 'int64':
print('PASS: position col is numeric'
, '\ndtype is:', kd_df.index.dtype)
else:
print('FAIL: position col is not numeric'
, '\nConverting to numeric')
kd_df.index.astype('int64')
print('Checking dtype for after conversion:\n'
, '\ndtype is:', kd_df.index.dtype
, '\n=========================================================')
# Ensuring lowercase column names for consistency
kd_df.columns = kd_df.columns.str.lower()
#===============
# writing file
#===============
print('Writing file:'
, '\nFilename:', outputkdcsv
, '\nExpected no. of rows:', len(kd_df)
, '\nExpected no. of cols:', len(kd_df.columns)
, '\n=============================================================')
kd_df.to_csv(outputkdcsv, header = True, index = True)
#===============
# plot: optional!
#===============
# http://www.dalkescientific.com/writings/NBN/plotting.html
# FIXME: save fig
# extract just pdb if from 'id' to pass to title of plot
# foo = re.match(r'(^[0-9]{1}\w{3})', id).groups(1)
#if doplot:
plot(kd_values, linewidth = 1.0)
#axis(xmin = 1, xmax = num_residues)
xlabel('Residue Number')
ylabel('Hydrophobicity')
title('K&D Hydrophobicity for ' + id)
show()
#%% end of function
#=======================================================================
def main():
print('Running hydropathy calcs with following params\n'
, '\nInput fasta file:', in_filename_fasta
, '\nOutput:', out_filename_kd)
kd_to_csv(infile_fasta, outfile_kd, 3)
print('Finished writing file:'
, '\nFile:', outfile_kd
, '\n=============================================================')
if __name__ == '__main__':
main()
#%% end of script
#=======================================================================

203
scripts/rd_df.py Executable file
View file

@ -0,0 +1,203 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
#=============================================================================
# Task: Residue depth (rd) processing to generate a df with residue_depth(rd)
# values
# FIXME: source file is MANUALLY downloaded from the website
# Input: '.tsv' i.e residue depth txt file (output from .zip file manually
# downloaded from the website).
# This should be integrated into the pipeline
# Output: .csv with 3 cols i.e position, rd_values & 3-letter wt aa code(caps)
#=============================================================================
#%% load packages
import sys, os
import argparse
import pandas as pd
#=============================================================================
#%% specify input and curr dir
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
os.getcwd()
#=======================================================================
#%% command line args
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help='drug name', default = None)
arg_parser.add_argument('-g', '--gene', help='gene name (case sensitive)', default = None)
arg_parser.add_argument('--datadir', help = 'Data Directory. By default, it assmumes homedir + git/Data')
arg_parser.add_argument('-i', '--input_dir', help = 'Input dir containing pdb files. By default, it assmumes homedir + <drug> + input')
arg_parser.add_argument('-o', '--output_dir', help = 'Output dir for results. By default, it assmes homedir + <drug> + output')
arg_parser.add_argument('-rd','--rd_file', help = 'residue depth file. By default, it assmumes a file called <gene>_rd.tsv in output_dir')
arg_parser.add_argument('--debug', action='store_true', help = 'Debug Mode')
args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output
#drug = 'pyrazinamide'
#gene = 'pncA'
drug = args.drug
gene = args.gene
gene_match = gene + '_p.'
data_dir = args.datadir
indir = args.input_dir
outdir = args.output_dir
rd_filename = args.rd_file
DEBUG = args.debug
#============
# directories
#============
if data_dir:
datadir = data_dir
else:
datadir = homedir + '/' + 'git/Data'
if not indir:
indir = datadir + '/' + drug + '/' + 'input'
if not outdir:
outdir = datadir + '/' + drug + '/' + 'output'
#======
# input
#=======
if rd_filename:
in_filename_rd = rd_filename
else:
#in_filename_rd = '3pl1_rd.tsv'
in_filename_rd = gene.lower() + '_rd.tsv'
infile_rd = outdir + '/' + in_filename_rd
print('Input file:', infile_rd
, '\n=============================================================')
#=======
# output
#=======
out_filename_rd = gene.lower() + '_rd.csv'
outfile_rd = outdir + '/' + out_filename_rd
print('Output file:', outfile_rd
, '\n=============================================================')
#%% end of variable assignment for input and output files
#=======================================================================
#%% rd values from <gene>_rd.tsv values
def rd_to_csv(inputtsv, outputrdcsv):
"""
formats residue depth values from input file
@param inputtsv: tsv file downloaded from {INSERT LINK}
@type inputtsv: string
@param outputrdsv: csv file with rd values
@type outfile_rd: string
@return: none, writes rd values df as csv
"""
#========================
# read downloaded tsv file
#========================
#%% Read input file
rd_data = pd.read_csv(inputtsv, sep = '\t')
print('Reading input file:', inputtsv
, '\nNo. of rows:', len(rd_data)
, '\nNo. of cols:', len(rd_data.columns))
print('Column names:', rd_data.columns
, '\n===========================================================')
#========================
# creating position col
#========================
# Extracting residue number from index and assigning
# the values to a column [position]. Then convert the position col to numeric.
rd_data['position'] = rd_data.index.str.extract('([0-9]+)').values
# converting position to numeric
rd_data['position'] = pd.to_numeric(rd_data['position'])
rd_data['position'].dtype
print('Extracted residue num from index and assigned as a column:'
, '\ncolumn name: position'
, '\ntotal no. of cols now:', len(rd_data.columns)
, '\n=========================================================')
#========================
# Renaming amino-acid
# and all-atom cols
#========================
print('Renaming columns:'
, '\ncolname==> # chain:residue: wt_3letter_caps'
, '\nYES... the column name *actually* contains a # ..!'
, '\ncolname==> all-atom: rd_values'
, '\n=========================================================')
rd_data.rename(columns = {'# chain:residue':'wt_3letter_caps', 'all-atom':'rd_values'}, inplace = True)
print('Column names:', rd_data.columns)
#========================
# extracting df with the
# desired columns
#========================
print('Extracting relevant columns for writing df as csv')
rd_df = rd_data[['position','rd_values','wt_3letter_caps']]
if len(rd_df) == len(rd_data):
print('PASS: extracted df has expected no. of rows'
,'\nExtracted df dim:'
,'\nNo. of rows:', len(rd_df)
,'\nNo. of cols:', len(rd_df.columns))
else:
print('FAIL: no. of rows mimatch'
, '\nExpected no. of rows:', len(rd_data)
, '\nGot no. of rows:', len(rd_df)
, '\n=====================================================')
# Ensuring lowercase column names for consistency
rd_df.columns = rd_df.columns.str.lower()
#===============
# writing file
#===============
print('Writing file:'
, '\nFilename:', outputrdcsv
# , '\nPath:', outdir
# , '\nExpected no. of rows:', len(rd_df)
# , '\nExpected no. of cols:', len(rd_df.columns)
, '\n=========================================================')
rd_df.to_csv(outputrdcsv, header = True, index = False)
#%% end of function
#=======================================================================
#%% call function
#rd_to_csv(infile_rd, outfile_rd)
#=======================================================================
def main():
print('residue depth using the following params'
, '\nInput residue depth file:', in_filename_rd
, '\nOutput:', out_filename_rd)
rd_to_csv(infile_rd, outfile_rd)
print('Finished Writing file:'
, '\nFilename:', outfile_rd
, '\n=============================================================')
if __name__ == '__main__':
main()
#%% end of script
#=======================================================================