adde dummy classifier
This commit is contained in:
parent
a15d801c2a
commit
d14c3f9c4a
1 changed files with 97 additions and 0 deletions
97
scripts/ml/dummy_classifier.py
Normal file
97
scripts/ml/dummy_classifier.py
Normal file
|
@ -0,0 +1,97 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Thu Jul 7 10:54:09 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from sklearn.dummy import DummyClassifier
|
||||
|
||||
X_eg = np.array([-1, 1, 1, 1])
|
||||
y_eg = np.array([0, 1, 1, 1])
|
||||
dummy_clf = DummyClassifier(strategy="most_frequent")
|
||||
dummy_clf.fit(X_eg, y_eg)
|
||||
DummyClassifier(strategy='most_frequent')
|
||||
dummy_clf.predict(X_eg)
|
||||
np.array([1, 1, 1, 1])
|
||||
dummy_clf.score(X_eg, y_eg)
|
||||
0.75
|
||||
|
||||
dummy_clf.matthews_corrcoef(X_eg, y_eg)
|
||||
|
||||
|
||||
|
||||
#%%
|
||||
df['dst_mode']
|
||||
y_all_tt = df.loc[:,'dst']
|
||||
y_all_tt.value_counts()
|
||||
#Counter(y_all_tt)
|
||||
#0: 71, 1: 114
|
||||
y_all_tt.value_counts(normalize = True)
|
||||
|
||||
df2['y']
|
||||
y_train_tt = df2['y']
|
||||
Counter(y_train_tt)
|
||||
##0: 41, 1: 82
|
||||
y_train_tt.value_counts(normalize = True)
|
||||
|
||||
df2['y_bts']
|
||||
y_bts_tt = df2['y_bts']
|
||||
Counter(y_bts_tt)
|
||||
#0: 21, 1: 41
|
||||
y_bts_tt.value_counts(normalize = True)
|
||||
|
||||
#%%
|
||||
df_clean = df[df['dst'].notna()]
|
||||
X = df_clean.iloc[:,0:171]
|
||||
X.columns
|
||||
|
||||
y = df_clean.iloc[:,171] # dst
|
||||
y.value_counts()
|
||||
|
||||
y2 = df_clean.iloc[:,172] #dst_mode
|
||||
y2.value_counts()
|
||||
|
||||
X_train_tt,X_test_tt, y_train_tt, y_test_tt = train_test_split(X, y, test_size=0.30, random_state=42, stratify = y)
|
||||
|
||||
y2.value_counts()
|
||||
round(y.value_counts(normalize = True),2)
|
||||
|
||||
y_train_tt.value_counts()
|
||||
round(y_train_tt.value_counts(normalize = True),2)
|
||||
|
||||
y_test_tt.value_counts()
|
||||
round(y_test_tt.value_counts(normalize = True),2)
|
||||
|
||||
dummy_clf = DummyClassifier(strategy="most_frequent")
|
||||
dummy_clf.fit(X_train_tt, y_train_tt)
|
||||
DummyClassifier(strategy='most_frequent')
|
||||
dummy_clf.predict(X_test_tt)
|
||||
|
||||
# pnca: split 0/30
|
||||
=======================
|
||||
Total y count in data:
|
||||
1.0 114 (62%)
|
||||
0.0 71 (38%)
|
||||
=======================
|
||||
|
||||
=======================
|
||||
Train y count in data:
|
||||
1.0 79 (61%)
|
||||
0.0 50 (39%)
|
||||
=======================
|
||||
|
||||
=======================
|
||||
Test y count in data:
|
||||
1.0 35 (62%)
|
||||
0.0 21 (38%)
|
||||
=======================
|
||||
|
||||
|
||||
acccuracy:
|
||||
|
||||
TP+TN/TP+TN+FP+FN
|
||||
|
||||
114/71
|
Loading…
Add table
Add a link
Reference in a new issue