stability and cons revised bp out

This commit is contained in:
Tanushree Tunstall 2022-08-16 14:45:31 +01:00
parent f244741e83
commit cd9b1ad245
2 changed files with 222 additions and 125 deletions

View file

@ -321,6 +321,120 @@ sensP
# coord_flip() + scale_x_reverse()
# sensP2
##############################################################
#===================
# Stability
#===================
# duetP
duetP = stability_count_bp(plotdf = df3
, df_colname = "duet_outcome"
, leg_title = "mCSM-DUET"
#, label_categories = labels_duet
, yaxis_title = "Number of nsSNPs"
, leg_position = "none"
, subtitle_text = "mCSM-DUET"
, bar_fill_values = c("#F8766D", "#00BFC4")
, subtitle_colour= "black"
, sts = 10
, lts = 8
, ats = 12
, als = 11
, ltis = 11
, geom_ls = 2.5
)
duetP
# foldx
foldxP = stability_count_bp(plotdf = df3
, df_colname = "foldx_outcome"
#, leg_title = "FoldX"
#, label_categories = labels_foldx
, yaxis_title = ""
, leg_position = "none"
, subtitle_text = "FoldX"
, bar_fill_values = c("#F8766D", "#00BFC4")
, sts = 10
, lts = 8
, ats = 12
, als = 11
, ltis = 11
, geom_ls = 2.5
)
# deepddg
deepddgP = stability_count_bp(plotdf = df3
, df_colname = "deepddg_outcome"
#, leg_title = "DeepDDG"
#, label_categories = labels_deepddg
, yaxis_title = ""
, leg_position = "none"
, subtitle_text = "DeepDDG"
, bar_fill_values = c("#F8766D", "#00BFC4")
, sts = 10
, lts = 8
, ats = 12
, als = 11
, ltis = 11
, geom_ls = 2.5
)
# deepddg
dynamut2P = stability_count_bp(plotdf = df3
, df_colname = "ddg_dynamut2_outcome"
#, leg_title = "Dynamut2"
#, label_categories = labels_ddg_dynamut2_outcome
, yaxis_title = ""
, leg_position = "none"
, subtitle_text = "Dynamut2"
, bar_fill_values = c("#F8766D", "#00BFC4")
, sts = 10
, lts = 8
, ats = 12
, als = 11
, ltis = 11
, geom_ls = 2.5
)
dynamut2P
# provean
proveanP = stability_count_bp(plotdf = df3
, df_colname = "provean_outcome"
#, leg_title = "PROVEAN"
#, label_categories = labels_provean
, yaxis_title = "Number of nsSNPs"
, leg_position = "none" # top
, subtitle_text = "PROVEAN"
, bar_fill_values = c("#D01C8B", "#F1B6DA") # light pink and deep
, sts = 10
, lts = 8
, ats = 12
, als = 11
, ltis = 11
, geom_ls = 2.5
)
# snap2
snap2P = stability_count_bp(plotdf = df3
, df_colname = "snap2_outcome"
#, leg_title = "SNAP2"
#, label_categories = labels_snap2
, yaxis_title = ""
, leg_position = "none" # top
, subtitle_text = "SNAP2"
, bar_fill_values = c("#D01C8B", "#F1B6DA") # light pink and deep
, sts = 10
, lts = 8
, ats = 12
, als = 11
, ltis = 11
, geom_ls = 2.5)
##############################################################
##############################
# FIXME for other genes: ATTEMPTED to derive numbers
##############################

View file

@ -1,145 +1,127 @@
duetP
foldxP
deepddgP
dynamut2P
proveanP
snap2P
mLigP
mmLigP
posC_lig
ppi2P
posC_ppi2
peP
sensP
#========================
# Common title settings
#=========================
theme_georgia <- function(...) {
theme_gray(base_family = "sans", ...) +
theme(plot.title = element_text(face = "bold"))
}
title_theme <- calc_element("plot.title", theme_georgia())
###############################################################
common_bp_title = paste0("Sites <", DistCutOff, angstroms_symbol)
# extract common legend
# extract common legends
# lig affinity
common_legend_outcome = get_legend(mLigP +
guides(color = guide_legend(nrow = 1)) +
theme(legend.position = "top"))
# ###############################################################
# #================================
# # Lig Affinity: outcome + site
# #================================
# ligT = paste0(common_bp_title, " ligand")
# lig_affT = ggdraw() +
# draw_label(
# ligT,
# fontfamily = title_theme$family,
# fontface = title_theme$face,
# #size = title_theme$size
# size = 8
# )
# stability
common_legend_outcome = get_legend(duetP +
guides(color = guide_legend(nrow = 1)) +
theme(legend.position = "top"))
# conservation
cons_common_legend_outcome = get_legend(snap2P +
guides(color = guide_legend(nrow = 1)) +
theme(legend.position = "top"))
###################################################################
#==================================
# Stability+Consevation: COMBINE
#==================================
tt_size = 10
#----------------------------
# stability and consv title
#----------------------------
tt_size = 10
tt_stab = ggdraw() +
draw_label(
paste0("Stability outcome"),
fontfamily = title_theme$family,
fontface = title_theme$face,
#size = title_theme$size
size = tt_size
)
tt_cons = ggdraw() +
draw_label(
paste0("Conservation outcome"),
fontfamily = title_theme$family,
fontface = title_theme$face,
size = tt_size
)
#----------------------
# Output plot
#-----------------------
stab_cons_CLP = paste0(outdir_images
,tolower(gene)
,"_stab_cons_BP_CLP.png")
print(paste0("plot filename:", stab_cons_CLP))
png(stab_cons_CLP, units = "in", width = 10, height = 5, res = 300 )
cowplot::plot_grid(
cowplot::plot_grid(
cowplot::plot_grid(
tt_stab,
common_legend_outcome,
nrow = 2
),
cowplot::plot_grid(
duetP,
foldxP,
deepddgP,
dynamut2P,
nrow = 1,
labels = c("A", "B", "C", "D"),
label_size = 12),
nrow = 2,
rel_heights=c(1,10)
),
NULL,
cowplot::plot_grid(
cowplot::plot_grid(
cowplot::plot_grid(
tt_cons,
cons_common_legend_outcome,
nrow = 2
),
cowplot::plot_grid(
proveanP,
snap2P,
nrow=1,
labels = c("E", "F"),
align = "hv"),
nrow = 2,
rel_heights = c(1, 10),
label_size = 12),
nrow=1
),
rel_widths = c(2,0.15,1),
nrow=1
)
dev.off()
#################################################################
#=======================================
# Affinity barplots: COMBINE ALL three
#========================================
# #-------------
# # Outplot
# #-------------
# ligaffP = paste0(outdir_images
# ,tolower(gene)
# ,"_lig_oc.png")
#
# #svg(affP, width = 20, height = 5.5)
# print(paste0("plot filename:", ligaffP))
# png(ligaffP, units = "in", width = 6, height = 4, res = 300 )
# cowplot::plot_grid(cowplot::plot_grid(lig_affT,common_legend_outcome,
# nrow = 2,
# rel_heights = c(1,1)
# ),
# cowplot::plot_grid(mLigP, mmLigP, posC_lig
# , nrow = 1
# #, labels = c("A", "B", "C","D")
# , rel_widths = c(1,1,1.8)
# , align = "h"),
# nrow = 2,
# labels = c("A", ""),
# label_size = 12,
# rel_heights = c(1,8))
# dev.off()
# #############################################################
# #================================
# # PPI2 Affinity: outcome + site
# #================================
# ppi2T = paste0(common_bp_title, " PP-interface")
# ppi2_affT = ggdraw() +
# draw_label(
# ppi2T,
# fontfamily = title_theme$family,
# fontface = title_theme$face,
# #size = title_theme$size
# size = 8
# )
#
#
# #-------------
# # Outplot: PPI2
# #-------------
# ppiaffP = paste0(outdir_images
# ,tolower(gene)
# ,"_ppi2_oc.png")
#
# #svg(affP, width = 20, height = 5.5)
# print(paste0("plot filename:", ppiaffP))
# png(ppiaffP, units = "in", width = 6, height = 4, res = 300 )
#
#
# cowplot::plot_grid(cowplot::plot_grid(ppi2_affT, common_legend_outcome,
# nrow = 2,
# rel_heights = c(1,1)),
# cowplot::plot_grid(ppi2P, posC_ppi2
# , nrow = 1
# , rel_widths = c(1.2,1.8)
# , align = "h"
# , label_size = my_label_size),
# nrow = 2,
# labels = c("B", ""),
# label_size = 12,
# rel_heights = c(1,8)
# )
#
# dev.off()
# #############################################################
#peP # pe counts
#================================
# PE + All position count
#================================
# peT_allT = ggdraw() +
# draw_label(
# paste0("All mutation sites"),
# fontfamily = title_theme$family,
# fontface = title_theme$face,
# #size = title_theme$size
# size = 8
# )
# #------------------------
# # Outplot: lig+ppi2+pe
# #------------------------
# pe_allCL = paste0(outdir_images
# ,tolower(gene)
# ,"_pe_oc.png")
#
# #svg(affP, width = 20, height = 5.5)
# print(paste0("plot filename:", pe_allCL))
# png(pe_allCL, units = "in", width = 6, height = 4, res = 300 )
#
#
# cowplot::plot_grid(peT_allT,
# cowplot::plot_grid(peP, posC_all
# , nrow = 1
# , rel_widths = c(1, 2)
# , align = "h"),
# nrow = 2,
# labels = c("C", "", ""),
# label_size = 12,
# rel_heights = c(1,8))
#
# dev.off()
#===========================================
# COMBINE ALL three
#==========================================
ligT = paste0(common_bp_title, " ligand")
lig_affT = ggdraw() +
draw_label(
@ -150,7 +132,9 @@ lig_affT = ggdraw() +
size = 8
)
p1 = cowplot::plot_grid(cowplot::plot_grid(lig_affT,common_legend_outcome, nrow=2),
p1 = cowplot::plot_grid(cowplot::plot_grid(lig_affT
, common_legend_outcome
, nrow=2),
cowplot::plot_grid(mLigP, mmLigP, posC_lig
, nrow = 1
, rel_widths = c(1,1,1.8)
@ -217,7 +201,6 @@ mut_impact_CLP = paste0(outdir_images
print(paste0("plot filename:", mut_impact_CLP))
png(mut_impact_CLP, units = "in", width = w, height = h, res = 300 )
cowplot::plot_grid(p1, p2, p3
, nrow = 1
, labels = "AUTO"
@ -270,5 +253,5 @@ print(paste0("plot filename:", sensCLP))
png(sensCLP, units = "in", width = 1, height = 1, res = 300 )
sensP
dev.off()
###########################################################