moved corr_data.R to redundant/
This commit is contained in:
parent
1035547309
commit
cd772e9df1
2 changed files with 149 additions and 412 deletions
|
@ -1,168 +0,0 @@
|
||||||
#!/usr/bin/env Rscript
|
|
||||||
#########################################################
|
|
||||||
# TASK: Script to format data for corr plots
|
|
||||||
#########################################################
|
|
||||||
#library(dplyr)
|
|
||||||
|
|
||||||
#=================================================
|
|
||||||
# Data for Corrplots
|
|
||||||
#=================================================
|
|
||||||
cat("\n=========================================="
|
|
||||||
, "\nCORR PLOTS data: ALL params"
|
|
||||||
, "\n=========================================")
|
|
||||||
|
|
||||||
# use data
|
|
||||||
#merged_df2
|
|
||||||
geneL_normal = c("pnca")
|
|
||||||
geneL_na_dy = c("gid")
|
|
||||||
geneL_na = c("rpob")
|
|
||||||
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
|
|
||||||
|
|
||||||
#----------------------------
|
|
||||||
# columns for corr plots:PS
|
|
||||||
#----------------------------
|
|
||||||
# NOTE: you can add mcsm_ppi column as well, and it will only select what it can find!
|
|
||||||
big_df_colnames = data.frame(names(merged_df2))
|
|
||||||
|
|
||||||
core_cols = c("mutationinformation", drug, "mutation_info_labels"
|
|
||||||
, "duet_stability_change", "ligand_affinity_change", "ddg_foldx", "asa", "rsa"
|
|
||||||
, "rd_values", "kd_values", "log10_or_mychisq", "neglog_pval_fisher","af"
|
|
||||||
, "deepddg" , "ddg_dynamut2"
|
|
||||||
, "consurf_score"
|
|
||||||
#, "consurf_scaled"
|
|
||||||
, "snap2_score"
|
|
||||||
#, "snap2_scaled", "snap2_accuracy_pc"
|
|
||||||
, "ligand_distance")
|
|
||||||
|
|
||||||
if (tolower(gene)%in%geneL_normal){
|
|
||||||
corr_cols_select = core_cols
|
|
||||||
}
|
|
||||||
if (tolower(gene)%in%geneL_na_dy){
|
|
||||||
additional_cols = c("mcsm_na_affinity"
|
|
||||||
, "ddg_dynamut"
|
|
||||||
, "ddg_encom", "dds_encom"
|
|
||||||
, "ddg_mcsm", "ddg_sdm"
|
|
||||||
, "ddg_duet"
|
|
||||||
#, "mcsm_na_scaled"
|
|
||||||
#, "ddg_dynamut_scaled"
|
|
||||||
#, "ddg_encom_scaled", "dds_encom_scaled"
|
|
||||||
#, "ddg_mcsm_scaled", "ddg_sdm_scaled"
|
|
||||||
#, "ddg_duet_scaled"
|
|
||||||
)
|
|
||||||
|
|
||||||
corr_cols_select = c(core_cols, additional_cols)
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
if (tolower(gene)%in%geneL_na){
|
|
||||||
additional_cols = c("mcsm_na_affinity"
|
|
||||||
#, "mcsm_na_scaled"
|
|
||||||
)
|
|
||||||
|
|
||||||
corr_cols_select = c(core_cols, additional_cols)
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
if (tolower(gene)%in%geneL_ppi2){
|
|
||||||
additional_cols = c("mcsm_ppi2_affinity")
|
|
||||||
corr_cols_select = c(core_cols, additional_cols)
|
|
||||||
}
|
|
||||||
|
|
||||||
# corr_cols_select <- c("mutationinformation", drug, "mutation_info_labels"
|
|
||||||
# , "duet_stability_change", "ligand_affinity_change", "ddg_foldx", "asa", "rsa"
|
|
||||||
# , "rd_values", "kd_values", "log10_or_mychisq", "neglog_pval_fisher","af"
|
|
||||||
# , "deepddg", "ddg_dynamut", "ddg_dynamut2", "mcsm_na_affinity"
|
|
||||||
# , "ddg_encom", "dds_encom", "ddg_mcsm", "ddg_sdm", "ddg_duet", "ligand_distance")
|
|
||||||
|
|
||||||
#===========================
|
|
||||||
# Corr data for plots: PS
|
|
||||||
# big_df ps: ~ merged_df2
|
|
||||||
#===========================
|
|
||||||
|
|
||||||
corr_df_m2 = merged_df2[,colnames(merged_df2)%in%corr_cols_select]
|
|
||||||
|
|
||||||
#-----------------------
|
|
||||||
# formatting: some cols
|
|
||||||
# Add pretty colnames
|
|
||||||
#-----------------------
|
|
||||||
corr_df_m2_f <- corr_df_m2 %>% dplyr::rename(
|
|
||||||
'DUET' = duet_stability_change
|
|
||||||
, 'mCSM-lig' = ligand_affinity_change
|
|
||||||
, FoldX = ddg_foldx
|
|
||||||
, DeepDDG = deepddg
|
|
||||||
, ASA = asa
|
|
||||||
, RSA = rsa
|
|
||||||
, KD = kd_values
|
|
||||||
, RD = rd_values
|
|
||||||
, MAF = af
|
|
||||||
, 'Log (OR)' = log10_or_mychisq
|
|
||||||
, '-Log (P)' = neglog_pval_fisher
|
|
||||||
, Dynamut = ddg_dynamut
|
|
||||||
, 'ENCoM-DDG'= ddg_encom
|
|
||||||
, mCSM = ddg_mcsm
|
|
||||||
, SDM = ddg_sdm
|
|
||||||
, 'DUET-d' = ddg_duet
|
|
||||||
, 'ENCoM-DDS'= dds_encom
|
|
||||||
, Dynamut2 = ddg_dynamut2
|
|
||||||
, 'mCSM-NA' = mcsm_na_affinity )
|
|
||||||
|
|
||||||
#===========================
|
|
||||||
# Corr data for plots: PS
|
|
||||||
# short_df ps: ~merged_df3
|
|
||||||
#===========================
|
|
||||||
|
|
||||||
corr_df_m3 = corr_df_m2[!duplicated(corr_df_m2$mutationinformation),]
|
|
||||||
|
|
||||||
na_or = sum(is.na(corr_df_m3$log10_or_mychisq))
|
|
||||||
check1 = nrow(corr_df_m3) - na_or; check1
|
|
||||||
|
|
||||||
if (nrow(corr_df_m3) == nrow(merged_df3) && nrow(merged_df3_comp) == check1) {
|
|
||||||
cat( "\nPASS: No. of rows for corr_df_m3 match"
|
|
||||||
, "\nPASS: No. of OR values checked: " , check1)
|
|
||||||
} else {
|
|
||||||
cat("\nFAIL: Numbers mismatch:"
|
|
||||||
, "\nExpected nrows: ", nrow(merged_df3)
|
|
||||||
, "\nGot: ", nrow(corr_df_m3)
|
|
||||||
, "\nExpected OR values: ", nrow(merged_df3_comp)
|
|
||||||
, "\nGot: ", check1)
|
|
||||||
}
|
|
||||||
|
|
||||||
#-----------------------
|
|
||||||
# formatting: some cols
|
|
||||||
# Add pretty colnames
|
|
||||||
#-----------------------
|
|
||||||
corr_df_m3_f <- corr_df_m3 %>%
|
|
||||||
rename(
|
|
||||||
DUET = duet_stability_change
|
|
||||||
, 'mCSM-lig' = ligand_affinity_change
|
|
||||||
, FoldX = ddg_foldx
|
|
||||||
, DeepDDG = deepddg
|
|
||||||
, ASA = asa
|
|
||||||
, RSA = rsa
|
|
||||||
, KD = kd_values
|
|
||||||
, RD = rd_values
|
|
||||||
, MAF = af
|
|
||||||
, 'Log (OR)' = log10_or_mychisq
|
|
||||||
, '-Log (P)' = neglog_pval_fisher
|
|
||||||
, Dynamut = ddg_dynamut
|
|
||||||
, 'ENCoM-DDG'= ddg_encom
|
|
||||||
, mCSM = ddg_mcsm
|
|
||||||
, SDM = ddg_sdm
|
|
||||||
, 'DUET-d' = ddg_duet
|
|
||||||
, 'ENCoM-DDS'= dds_encom
|
|
||||||
, Dynamut2 = ddg_dynamut2
|
|
||||||
, 'mCSM-NA' = mcsm_na_affinity )
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
cat("\nCorr Data created:"
|
|
||||||
, "\n==================================="
|
|
||||||
, "\ncorr_df_m2: created from merged_df2"
|
|
||||||
, "\n==================================="
|
|
||||||
, "\nnrows:", nrow(corr_df_m2)
|
|
||||||
, "\nncols:", ncol(corr_df_m2)
|
|
||||||
, "\n==================================="
|
|
||||||
, "\ncorr_df_m3: created from merged_df3"
|
|
||||||
, "\n==================================="
|
|
||||||
, "\nnrows:", nrow(corr_df_m3)
|
|
||||||
, "\nncols:", ncol(corr_df_m3)
|
|
||||||
)
|
|
|
@ -1,263 +1,168 @@
|
||||||
#!/usr/bin/env Rscript
|
#!/usr/bin/env Rscript
|
||||||
#########################################################
|
#########################################################
|
||||||
# TASK: Prepare for correlation data
|
# TASK: Script to format data for corr plots
|
||||||
|
#########################################################
|
||||||
|
#library(dplyr)
|
||||||
|
|
||||||
#=======================================================================
|
#=================================================
|
||||||
# working dir and loading libraries
|
# Data for Corrplots
|
||||||
getwd()
|
#=================================================
|
||||||
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
cat("\n=========================================="
|
||||||
getwd()
|
, "\nCORR PLOTS data: ALL params"
|
||||||
|
, "\n=========================================")
|
||||||
|
|
||||||
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
|
# use data
|
||||||
source("../functions/my_pairs_panel.R") # with lower panel turned off
|
#merged_df2
|
||||||
source("../functions/plotting_globals.R")
|
geneL_normal = c("pnca")
|
||||||
source("../functions/plotting_data.R")
|
geneL_na_dy = c("gid")
|
||||||
source("../functions/combining_dfs_plotting.R")
|
geneL_na = c("rpob")
|
||||||
###########################################################
|
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
|
||||||
#===========
|
|
||||||
# input
|
|
||||||
#===========
|
|
||||||
#---------------------
|
|
||||||
# call: import_dirs()
|
|
||||||
#---------------------
|
|
||||||
import_dirs(drug, gene)
|
|
||||||
|
|
||||||
#---------------------------
|
#----------------------------
|
||||||
# call: plotting_data()
|
# columns for corr plots:PS
|
||||||
#---------------------------
|
#----------------------------
|
||||||
#if (!exists("infile_params") && exists("gene")){
|
# NOTE: you can add mcsm_ppi column as well, and it will only select what it can find!
|
||||||
if (!is.character(infile_params) && exists("gene")){ # when running as cmd
|
big_df_colnames = data.frame(names(merged_df2))
|
||||||
#in_filename_params = paste0(tolower(gene), "_all_params.csv")
|
|
||||||
in_filename_params = paste0(tolower(gene), "_comb_afor.csv") # part combined for gid
|
core_cols = c("mutationinformation", drug, "mutation_info_labels"
|
||||||
infile_params = paste0(outdir, "/", in_filename_params)
|
, "duet_stability_change", "ligand_affinity_change", "ddg_foldx", "asa", "rsa"
|
||||||
cat("\nInput file for mcsm comb data not specified, assuming filename: ", infile_params, "\n")
|
, "rd_values", "kd_values", "log10_or_mychisq", "neglog_pval_fisher","af"
|
||||||
|
, "deepddg" , "ddg_dynamut2"
|
||||||
|
, "consurf_score"
|
||||||
|
#, "consurf_scaled"
|
||||||
|
, "snap2_score"
|
||||||
|
#, "snap2_scaled", "snap2_accuracy_pc"
|
||||||
|
, "ligand_distance")
|
||||||
|
|
||||||
|
if (tolower(gene)%in%geneL_normal){
|
||||||
|
corr_cols_select = core_cols
|
||||||
|
}
|
||||||
|
if (tolower(gene)%in%geneL_na_dy){
|
||||||
|
additional_cols = c("mcsm_na_affinity"
|
||||||
|
, "ddg_dynamut"
|
||||||
|
, "ddg_encom", "dds_encom"
|
||||||
|
, "ddg_mcsm", "ddg_sdm"
|
||||||
|
, "ddg_duet"
|
||||||
|
#, "mcsm_na_scaled"
|
||||||
|
#, "ddg_dynamut_scaled"
|
||||||
|
#, "ddg_encom_scaled", "dds_encom_scaled"
|
||||||
|
#, "ddg_mcsm_scaled", "ddg_sdm_scaled"
|
||||||
|
#, "ddg_duet_scaled"
|
||||||
|
)
|
||||||
|
|
||||||
|
corr_cols_select = c(core_cols, additional_cols)
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
# Input 1: read <gene>_comb_afor.csv
|
if (tolower(gene)%in%geneL_na){
|
||||||
cat("\nReading mcsm combined data file: ", infile_params)
|
additional_cols = c("mcsm_na_affinity"
|
||||||
mcsm_df = read.csv(infile_params, header = T)
|
#, "mcsm_na_scaled"
|
||||||
pd_df = plotting_data(mcsm_df)
|
)
|
||||||
my_df_u = pd_df[[1]] # this forms one of the input for combining_dfs_plotting()
|
|
||||||
|
corr_cols_select = c(core_cols, additional_cols)
|
||||||
#--------------------------------
|
|
||||||
# call: combining_dfs_plotting()
|
|
||||||
#--------------------------------
|
|
||||||
#if (!exists("infile_metadata") && exists("gene")){
|
|
||||||
if (!is.character(infile_metadata) && exists("gene")){ # when running as cmd
|
|
||||||
in_filename_metadata = paste0(tolower(gene), "_metadata.csv") # part combined for gid
|
|
||||||
infile_metadata = paste0(outdir, "/", in_filename_metadata)
|
|
||||||
cat("\nInput file for gene metadata not specified, assuming filename: ", infile_metadata, "\n")
|
|
||||||
}
|
}
|
||||||
|
|
||||||
# Input 2: read <gene>_meta data.csv
|
if (tolower(gene)%in%geneL_ppi2){
|
||||||
cat("\nReading meta data file: ", infile_metadata)
|
additional_cols = c("mcsm_ppi2_affinity")
|
||||||
|
corr_cols_select = c(core_cols, additional_cols)
|
||||||
|
}
|
||||||
|
|
||||||
gene_metadata <- read.csv(infile_metadata
|
# corr_cols_select <- c("mutationinformation", drug, "mutation_info_labels"
|
||||||
, stringsAsFactors = F
|
# , "duet_stability_change", "ligand_affinity_change", "ddg_foldx", "asa", "rsa"
|
||||||
, header = T)
|
# , "rd_values", "kd_values", "log10_or_mychisq", "neglog_pval_fisher","af"
|
||||||
|
# , "deepddg", "ddg_dynamut", "ddg_dynamut2", "mcsm_na_affinity"
|
||||||
|
# , "ddg_encom", "dds_encom", "ddg_mcsm", "ddg_sdm", "ddg_duet", "ligand_distance")
|
||||||
|
|
||||||
all_plot_dfs = combining_dfs_plotting(my_df_u
|
#===========================
|
||||||
, gene_metadata
|
# Corr data for plots: PS
|
||||||
, lig_dist_colname = 'ligand_distance'
|
# big_df ps: ~ merged_df2
|
||||||
, lig_dist_cutoff = 10)
|
#===========================
|
||||||
|
|
||||||
cat(paste0("Directories imported:"
|
corr_df_m2 = merged_df2[,colnames(merged_df2)%in%corr_cols_select]
|
||||||
, "\ndatadir:", datadir
|
|
||||||
, "\nindir:", indir
|
|
||||||
, "\noutdir:", outdir
|
|
||||||
, "\nplotdir:", plotdir))
|
|
||||||
|
|
||||||
cat(paste0("Variables imported:"
|
#-----------------------
|
||||||
, "\ndrug:", drug
|
# formatting: some cols
|
||||||
, "\ngene:", gene
|
# Add pretty colnames
|
||||||
, "\ngene_match:", gene_match
|
#-----------------------
|
||||||
, "\nAngstrom symbol:", angstroms_symbol
|
corr_df_m2_f <- corr_df_m2 %>% dplyr::rename(
|
||||||
, "\nNo. of duplicated muts:", dup_muts_nu
|
'DUET' = duet_stability_change
|
||||||
, "\nNA count for ORs:", na_count
|
, 'mCSM-lig' = ligand_affinity_change
|
||||||
, "\nNA count in df2:", na_count_df2
|
, FoldX = ddg_foldx
|
||||||
, "\nNA count in df3:", na_count_df3))
|
, DeepDDG = deepddg
|
||||||
|
, ASA = asa
|
||||||
|
, RSA = rsa
|
||||||
|
, KD = kd_values
|
||||||
|
, RD = rd_values
|
||||||
|
, MAF = af
|
||||||
|
, 'Log (OR)' = log10_or_mychisq
|
||||||
|
, '-Log (P)' = neglog_pval_fisher
|
||||||
|
, Dynamut = ddg_dynamut
|
||||||
|
, 'ENCoM-DDG'= ddg_encom
|
||||||
|
, mCSM = ddg_mcsm
|
||||||
|
, SDM = ddg_sdm
|
||||||
|
, 'DUET-d' = ddg_duet
|
||||||
|
, 'ENCoM-DDS'= dds_encom
|
||||||
|
, Dynamut2 = ddg_dynamut2
|
||||||
|
, 'mCSM-NA' = mcsm_na_affinity )
|
||||||
|
|
||||||
#=======
|
#===========================
|
||||||
# output
|
# Corr data for plots: PS
|
||||||
#=======
|
# short_df ps: ~merged_df3
|
||||||
# corr_ps_df2
|
#===========================
|
||||||
# corr_lig_df2
|
|
||||||
|
|
||||||
####################################################################
|
corr_df_m3 = corr_df_m2[!duplicated(corr_df_m2$mutationinformation),]
|
||||||
# end of loading libraries and functions
|
|
||||||
####################################################################
|
|
||||||
|
|
||||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
na_or = sum(is.na(corr_df_m3$log10_or_mychisq))
|
||||||
#df_ps = merged_df3
|
check1 = nrow(corr_df_m3) - na_or; check1
|
||||||
df_ps = merged_df2
|
|
||||||
|
|
||||||
#df_lig = merged_df3_lig
|
if (nrow(corr_df_m3) == nrow(merged_df3) && nrow(merged_df3_comp) == check1) {
|
||||||
df_lig = merged_df2_lig
|
cat( "\nPASS: No. of rows for corr_df_m3 match"
|
||||||
|
, "\nPASS: No. of OR values checked: " , check1)
|
||||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
} else {
|
||||||
|
cat("\nFAIL: Numbers mismatch:"
|
||||||
|
, "\nExpected nrows: ", nrow(merged_df3)
|
||||||
|
, "\nGot: ", nrow(corr_df_m3)
|
||||||
|
, "\nExpected OR values: ", nrow(merged_df3_comp)
|
||||||
|
, "\nGot: ", check1)
|
||||||
|
}
|
||||||
|
|
||||||
|
#-----------------------
|
||||||
|
# formatting: some cols
|
||||||
|
# Add pretty colnames
|
||||||
|
#-----------------------
|
||||||
|
corr_df_m3_f <- corr_df_m3 %>%
|
||||||
|
rename(
|
||||||
|
DUET = duet_stability_change
|
||||||
|
, 'mCSM-lig' = ligand_affinity_change
|
||||||
|
, FoldX = ddg_foldx
|
||||||
|
, DeepDDG = deepddg
|
||||||
|
, ASA = asa
|
||||||
|
, RSA = rsa
|
||||||
|
, KD = kd_values
|
||||||
|
, RD = rd_values
|
||||||
|
, MAF = af
|
||||||
|
, 'Log (OR)' = log10_or_mychisq
|
||||||
|
, '-Log (P)' = neglog_pval_fisher
|
||||||
|
, Dynamut = ddg_dynamut
|
||||||
|
, 'ENCoM-DDG'= ddg_encom
|
||||||
|
, mCSM = ddg_mcsm
|
||||||
|
, SDM = ddg_sdm
|
||||||
|
, 'DUET-d' = ddg_duet
|
||||||
|
, 'ENCoM-DDS'= dds_encom
|
||||||
|
, Dynamut2 = ddg_dynamut2
|
||||||
|
, 'mCSM-NA' = mcsm_na_affinity )
|
||||||
|
|
||||||
########################################################################
|
########################################################################
|
||||||
# end of data extraction and cleaning for plots #
|
cat("\nCorr Data created:"
|
||||||
########################################################################
|
, "\n==================================="
|
||||||
|
, "\ncorr_df_m2: created from merged_df2"
|
||||||
#======================
|
, "\n==================================="
|
||||||
# adding log cols
|
, "\nnrows:", nrow(corr_df_m2)
|
||||||
#======================
|
, "\nncols:", ncol(corr_df_m2)
|
||||||
df_ps$log10_or_mychisq = log10(df_ps$or_mychisq)
|
, "\n==================================="
|
||||||
df_ps$neglog_pval_fisher = -log10(df_ps$pval_fisher)
|
, "\ncorr_df_m3: created from merged_df3"
|
||||||
|
, "\n==================================="
|
||||||
df_ps$log10_or_kin = log10(df_ps$or_kin)
|
, "\nnrows:", nrow(corr_df_m3)
|
||||||
df_ps$neglog_pwald_kin = -log10(df_ps$pwald_kin)
|
, "\nncols:", ncol(corr_df_m3)
|
||||||
|
)
|
||||||
#df_ps$mutation_info_labels = ifelse(df_ps$mutation_info == dr_muts_col, 1, 0)
|
|
||||||
|
|
||||||
#===============================
|
|
||||||
# Data for Correlation plots:PS
|
|
||||||
#===============================
|
|
||||||
# subset data to generate pairwise correlations
|
|
||||||
cols_to_select = c("mutationinformation"
|
|
||||||
, "duet_scaled"
|
|
||||||
, "foldx_scaled"
|
|
||||||
#, "mutation_info_labels"
|
|
||||||
, "asa"
|
|
||||||
, "rsa"
|
|
||||||
, "rd_values"
|
|
||||||
, "kd_values"
|
|
||||||
, "log10_or_mychisq"
|
|
||||||
, "neglog_pval_fisher"
|
|
||||||
, "or_kin"
|
|
||||||
, "neglog_pwald_kin"
|
|
||||||
, "af"
|
|
||||||
#, "af_kin"
|
|
||||||
, "duet_outcome"
|
|
||||||
, drug)
|
|
||||||
|
|
||||||
corr_data_ps = df_ps[cols_to_select]
|
|
||||||
|
|
||||||
dim(corr_data_ps)
|
|
||||||
|
|
||||||
# assign nice colnames (for display)
|
|
||||||
my_corr_colnames = c("Mutation"
|
|
||||||
, "DUET"
|
|
||||||
, "Foldx"
|
|
||||||
#, "Mutation class"
|
|
||||||
, "ASA"
|
|
||||||
, "RSA"
|
|
||||||
, "RD"
|
|
||||||
, "KD"
|
|
||||||
, "Log (OR)"
|
|
||||||
, "-Log (P)"
|
|
||||||
, "Adjusted (OR)"
|
|
||||||
, "-Log (P wald)"
|
|
||||||
, "AF"
|
|
||||||
, "AF_kin"
|
|
||||||
, "duet_outcome"
|
|
||||||
, drug)
|
|
||||||
|
|
||||||
length(my_corr_colnames)
|
|
||||||
|
|
||||||
colnames(corr_data_ps)
|
|
||||||
colnames(corr_data_ps) <- my_corr_colnames
|
|
||||||
colnames(corr_data_ps)
|
|
||||||
|
|
||||||
start = 1
|
|
||||||
end = which(colnames(corr_data_ps) == drug); end # should be the last column
|
|
||||||
offset = 1
|
|
||||||
|
|
||||||
#corr_ps_df2 = corr_data_ps[start:(end-offset)] # without drug
|
|
||||||
corr_ps_df2 = corr_data_ps[start:end]
|
|
||||||
head(corr_ps_df2)
|
|
||||||
|
|
||||||
#--------------------------
|
|
||||||
# short_df ps: merged_df3
|
|
||||||
#--------------------------
|
|
||||||
corr_ps_df3 = corr_ps_df2[!duplicated(corr_ps_df2$Mutation),]
|
|
||||||
|
|
||||||
na_or = sum(is.na(corr_ps_df3$`Log (OR)`))
|
|
||||||
check1 = nrow(corr_ps_df3) - na_or
|
|
||||||
|
|
||||||
na_adj_or = sum(is.na(corr_ps_df3$`adjusted (OR)`))
|
|
||||||
check2 = nrow(corr_ps_df3) - na_adj_or
|
|
||||||
|
|
||||||
#if ( nrow(corr_ps_df3) == nrow(merged_df3) ) {
|
|
||||||
# cat( "PASS: No. of rows for corr_ps_df3 match" )
|
|
||||||
#}if ( nrow(merged_df3_comp) == check1 ){
|
|
||||||
# cat( "PASS: No. of OR values checked" )
|
|
||||||
#}
|
|
||||||
|
|
||||||
################################################################################################
|
|
||||||
#=================================
|
|
||||||
# Data for Correlation plots: LIG
|
|
||||||
#=================================
|
|
||||||
table(df_lig$ligand_outcome)
|
|
||||||
|
|
||||||
df_lig$log10_or_mychisq = log10(df_lig$or_mychisq)
|
|
||||||
df_lig$neglog_pval_fisher = -log10(df_lig$pval_fisher)
|
|
||||||
|
|
||||||
df_lig$log10_or_kin = log10(df_lig$or_kin)
|
|
||||||
df_lig$neglog_pwald_kin = -log10(df_lig$pwald_kin)
|
|
||||||
|
|
||||||
# subset data to generate pairwise correlations
|
|
||||||
cols_to_select = c("mutationinformation"
|
|
||||||
, "affinity_scaled"
|
|
||||||
#, "mutation_info_labels"
|
|
||||||
, "asa"
|
|
||||||
, "rsa"
|
|
||||||
, "rd_values"
|
|
||||||
, "kd_values"
|
|
||||||
, "log10_or_mychisq"
|
|
||||||
, "neglog_pval_fisher"
|
|
||||||
, "or_kin"
|
|
||||||
, "neglog_pwald_kin"
|
|
||||||
, "af"
|
|
||||||
, "af_kin"
|
|
||||||
, "ligand_outcome"
|
|
||||||
, drug)
|
|
||||||
|
|
||||||
corr_data_lig = df_lig[, cols_to_select]
|
|
||||||
|
|
||||||
|
|
||||||
dim(corr_data_lig)
|
|
||||||
|
|
||||||
# assign nice colnames (for display)
|
|
||||||
my_corr_colnames = c("Mutation"
|
|
||||||
, "Ligand Affinity"
|
|
||||||
#, "Mutation class"
|
|
||||||
, "ASA"
|
|
||||||
, "RSA"
|
|
||||||
, "RD"
|
|
||||||
, "KD"
|
|
||||||
, "Log (OR)"
|
|
||||||
, "-Log (P)"
|
|
||||||
, "Adjusted (OR)"
|
|
||||||
, "-Log (P wald)"
|
|
||||||
, "AF"
|
|
||||||
, "AF_kin"
|
|
||||||
, "ligand_outcome"
|
|
||||||
, drug)
|
|
||||||
|
|
||||||
length(my_corr_colnames)
|
|
||||||
|
|
||||||
colnames(corr_data_lig)
|
|
||||||
colnames(corr_data_lig) <- my_corr_colnames
|
|
||||||
colnames(corr_data_lig)
|
|
||||||
|
|
||||||
start = 1
|
|
||||||
end = which(colnames(corr_data_lig) == drug); end # should be the last column
|
|
||||||
offset = 1
|
|
||||||
|
|
||||||
#corr_lig_df2 = corr_data_lig[start:(end-offset)] # without drug
|
|
||||||
corr_lig_df2 = corr_data_lig[start:end]
|
|
||||||
head(corr_lig_df2)
|
|
||||||
|
|
||||||
#-----------------
|
|
||||||
# short_df lig: merged_df3_lig
|
|
||||||
#-----------------
|
|
||||||
|
|
||||||
corr_lig_df3 = corr_lig_df2[!duplicated(corr_lig_df2$Mutation),]
|
|
||||||
|
|
||||||
#######################################################
|
|
||||||
rm(merged_df2, merged_df2_lig, merged_df3, merged_df3_lig
|
|
||||||
, merged_df2_comp , merged_df3_comp, merged_df2_comp_lig, merged_df3_comp_lig
|
|
||||||
, corr_data_ps, corr_data_lig)
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue