attempting affintiy stuff
This commit is contained in:
parent
0d8979dfcb
commit
ccc877e811
2 changed files with 151 additions and 47 deletions
|
@ -59,10 +59,14 @@ length(unique((df3$mutationinformation)))
|
|||
all_colnames = as.data.frame(colnames(df3))
|
||||
common_cols = c("mutationinformation"
|
||||
, "position"
|
||||
, "X5uhc_position"
|
||||
, "X5uhc_offset"
|
||||
, "dst_mode"
|
||||
, "mutation_info_labels"
|
||||
, "sensitivity"
|
||||
, "ligand_distance")
|
||||
|
||||
, "ligand_distance"
|
||||
, "interface_dist")
|
||||
|
||||
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
|
||||
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
|
||||
|
@ -122,25 +126,28 @@ outcome_cols_affinity = c( "ligand_outcome"
|
|||
|
||||
######################################################################
|
||||
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols
|
||||
, raw_cols
|
||||
, scaled_cols
|
||||
, outcome_cols_affinity)]
|
||||
, raw_cols_affinity
|
||||
, scaled_cols_affinity
|
||||
, outcome_cols_affinity
|
||||
, raw_cols_stability
|
||||
, scaled_cols_stability
|
||||
, outcome_cols_stability
|
||||
)]
|
||||
|
||||
# cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols
|
||||
# , outcome_cols_affinity)]
|
||||
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols
|
||||
, scaled_cols_affinity)]
|
||||
|
||||
df3_plot = df3[, cols_to_extract]
|
||||
##############################################################
|
||||
# FIXME: ADD distance to NA when SP replies
|
||||
|
||||
#####################
|
||||
# Ensemble affinity: affinity_cols
|
||||
# mcsm_lig, mmcsm_lig and mcsm_na
|
||||
#####################
|
||||
# extract outcome cols and map numeric values to the categories
|
||||
# Destabilising == 0, and stabilising == 1 so rescaling can let -1 be destabilising
|
||||
|
||||
# df3_plot = df3[, cols_to_extract]
|
||||
#
|
||||
# df3_plot[, outcome_cols_affinity] <- sapply(df3_plot[, outcome_cols_affinity]
|
||||
# , function(x){ifelse(x == "Destabilising", 0, 1)})
|
||||
|
||||
df3_plot = df3[, c(common_cols, scaled_cols)]
|
||||
#########################################
|
||||
#=====================================
|
||||
# Affintiy (2 cols): average the scores
|
||||
# across predictors ==> average by
|
||||
|
@ -148,20 +155,61 @@ df3_plot = df3[, c(common_cols, scaled_cols)]
|
|||
|
||||
# column to average: ens_affinity
|
||||
#=====================================
|
||||
cols_to_average_affinity = which(colnames(df3_plot)%in%outcome_cols_affinity)
|
||||
cols_to_average_affinity
|
||||
cols_mcsm_lig = c("mutationinformation"
|
||||
, "position"
|
||||
, "sensitivity"
|
||||
, "X5uhc_position"
|
||||
, "X5uhc_offset"
|
||||
, "ligand_distance"
|
||||
, "ligand_outcome"
|
||||
, "mmcsm_lig_outcome")
|
||||
cols_mcsm_lig
|
||||
df3_lig_ens = df3[, cols_mcsm_lig]
|
||||
|
||||
cols_to_numeric = c("ligand_outcome","mmcsm_lig_outcome")
|
||||
df3_lig_ens[, cols_to_numeric] <- sapply(df3_lig_ens[, cols_to_numeric]
|
||||
, function(x){ifelse(x == "Destabilising", 0, 1)})
|
||||
|
||||
cols_to_average_lig = which(colnames(df3_lig_ens)%in%cols_to_numeric)
|
||||
cols_to_average_lig
|
||||
|
||||
# ensemble average across predictors
|
||||
df3_plot_affinity$ens_affinity = rowMeans(df3_plot_affinity[,cols_to_average_affinity])
|
||||
df3_lig_ens$ens_lig = rowMeans(df3_lig_ens[,cols_to_average_lig])
|
||||
|
||||
head(df3_plot_affinity$position); head(df3_plot_affinity$mutationinformation)
|
||||
head(df3_plot_affinity$ens_affinity)
|
||||
table(df3_plot_affinity$ens_affinity)
|
||||
head(df3_lig_ens$position); head(df3_lig_ens$mutationinformation)
|
||||
head(df3_lig_ens$ens_lig)
|
||||
table(df3_lig_ens$ens_lig)
|
||||
|
||||
#===============================
|
||||
# Filter ligand distance <10
|
||||
# from globals else uncomment
|
||||
#LigDist_cutoff = 10
|
||||
#LigDist_colname = "ligand_distance"
|
||||
#===============================
|
||||
table(df3_lig_ens[LigDist_colname]<LigDist_cutoff)
|
||||
expected_npos = table(df3_lig_ens$position[df3_lig_ens[LigDist_colname]<10])
|
||||
expected_npos = length(expected_npos)
|
||||
sum(table(df3_lig_ens$position[df3_lig_ens[LigDist_colname]<10]))
|
||||
|
||||
df3_lig_ens_filtered = df3_lig_ens[df3_lig_ens[LigDist_colname]<10,]
|
||||
|
||||
if ( nrow(df3_lig_ens_filtered) == sum(table(df3_lig_ens$position[df3_lig_ens[LigDist_colname]<10])) ){
|
||||
cat(paste0("\nPASS:", LigDist_colname, "filtered according to criteria:", LigDist_cutoff, angstroms_symbol ))
|
||||
}else{
|
||||
stop(paste0("\nAbort:", LigDist_colname, "could not be filtered according to criteria:", LigDist_cutoff, angstroms_symbol))
|
||||
}
|
||||
|
||||
# ensemble average of predictors by position
|
||||
mean_ens_affinity_by_position <- df3_plot_affinity %>%
|
||||
mean_ens_lig_by_position <- df3_lig_ens_filtered %>%
|
||||
dplyr::group_by(position) %>%
|
||||
dplyr::summarize(avg_ens_affinity = mean(ens_affinity))
|
||||
dplyr::summarize(avg_ens_lig = mean(ens_lig))
|
||||
|
||||
class(mean_ens_lig_by_position)
|
||||
|
||||
# convert to a df
|
||||
mean_ens_lig_by_position = as.data.frame(mean_ens_lig_by_position)
|
||||
|
||||
table(mean_ens_lig_by_position$avg_ens_lig)
|
||||
|
||||
# REscale b/w -1 and 1
|
||||
#en_aff_min = min(mean_ens_affinity_by_position['ens_affinity'])
|
||||
|
@ -171,38 +219,91 @@ mean_ens_affinity_by_position <- df3_plot_affinity %>%
|
|||
# mean_ens_affinity_by_position['avg_ens_affinity_scaled'] = lapply(mean_ens_affinity_by_position['avg_ens_affinity']
|
||||
# , function(x) ifelse(x < 0, x/abs(en_aff_min), x/en_aff_max))
|
||||
|
||||
|
||||
mean_ens_affinity_by_position['avg_ens_affinity_scaled'] = lapply(mean_ens_affinity_by_position['avg_ens_affinity']
|
||||
mean_ens_lig_by_position['avg_ens_lig_scaled'] = lapply(mean_ens_lig_by_position['avg_ens_lig']
|
||||
, function(x) {
|
||||
scales::rescale(x, to = c(-1,1)
|
||||
#, from = c(en_aff_min,en_aff_max))
|
||||
, from = c(0,1))
|
||||
})
|
||||
cat(paste0('Average affintiy scores:\n'
|
||||
, head(mean_ens_affinity_by_position['avg_ens_affinity'])
|
||||
|
||||
cat(paste0('Average (mcsm-lig+mmcsm-lig) scores:\n'
|
||||
, head(mean_ens_lig_by_position['avg_ens_lig'])
|
||||
, '\n---------------------------------------------------------------'
|
||||
, '\nAverage affintiy scaled scores:\n'
|
||||
, head(mean_ens_affinity_by_position['avg_ens_affinity_scaled'])))
|
||||
, '\nAverage (mcsm-lig+mmcsm-lig) scaled scores:\n'
|
||||
, head(mean_ens_lig_by_position['avg_ens_lig_scaled'])))
|
||||
|
||||
if ( nrow(mean_ens_lig_by_position) == expected_npos ){
|
||||
cat("\nPASS: Generated ensemble average values for ligand affinity" )
|
||||
}else{
|
||||
stop(paste0("\nAbort: length mismatch for ligand affinity data"))
|
||||
}
|
||||
|
||||
#################################################################
|
||||
|
||||
#=====================================
|
||||
# Affintiy (mCSM-ppi2):
|
||||
#D1148G for rpob DOES NOT EXIST for 5UHC
|
||||
#=====================================
|
||||
cols_mcsm_ppi2 = c("mutationinformation"
|
||||
, "position"
|
||||
, "X5uhc_position"
|
||||
, "X5uhc_offset"
|
||||
, "sensitivity"
|
||||
, "interface_dist"
|
||||
#, "mcsm_ppi2_affinity"
|
||||
#, "mcsm_ppi2_scaled"
|
||||
, "mcsm_ppi2_outcome"
|
||||
)
|
||||
cols_mcsm_ppi2
|
||||
df3_ppi2_raw = df3[, c(cols_mcsm_ppi2, "mcsm_ppi2_affinity", "mcsm_ppi2_scaled") ]
|
||||
|
||||
table(df3_ppi2_raw$mcsm_ppi2_outcome)
|
||||
|
||||
df3_ppi2 = df3[, cols_mcsm_ppi2]
|
||||
|
||||
cols_to_numeric_ppi2 = c("mcsm_ppi2_outcome")
|
||||
df3_ppi2[, cols_to_numeric_ppi2] <- sapply(df3_ppi2[, cols_to_numeric_ppi2]
|
||||
, function(x){ifelse(x == "Descreasing", 0, 1)})
|
||||
|
||||
cols_to_average_ppi2 = which(colnames(df3_ppi2)%in%cols_to_numeric_ppi2)
|
||||
cols_to_average_ppi2
|
||||
|
||||
#===============================
|
||||
# Filter interface <10
|
||||
Dist_cutoff = 10
|
||||
ppi2Dist_colname = "interface_dist"
|
||||
#===============================
|
||||
table(df3_ppi2[ppi2Dist_colname]<Dist_cutoff)
|
||||
expected_npos = table(df3_ppi2$position[df3_ppi2[ppi2Dist_colname]<10])
|
||||
expected_npos = length(expected_npos)
|
||||
sum(table(df3_ppi2$position[df3_ppi2[ppi2Dist_colname]<10]))
|
||||
|
||||
df3_ppi2_filtered = df3_ppi2[df3_ppi2[ppi2Dist_colname]<10,]
|
||||
|
||||
if (tolower(gene)== "rpob"){
|
||||
check = nrow(df3_ppi2_filtered) == ( sum(table(df3_ppi2$position[df3_ppi2[ppi2Dist_colname]<10])) + 1)
|
||||
}else{
|
||||
check = nrow(df3_ppi2_filtered) == sum(table(df3_ppi2$position[df3_ppi2[ppi2Dist_colname]<10]))
|
||||
}
|
||||
|
||||
if (check ){
|
||||
cat(paste0("\nPASS:", ppi2Dist_colname
|
||||
,"filtered according to criteria:"
|
||||
, Dist_cutoff
|
||||
, angstroms_symbol ))
|
||||
}else{
|
||||
stop(paste0("\nAbort:", ppi2Dist_colname
|
||||
, "could not be filtered according to criteria:"
|
||||
, Dist_cutoff, angstroms_symbol))
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#convert to a df
|
||||
mean_ens_affinity_by_position = as.data.frame(mean_ens_affinity_by_position)
|
||||
|
||||
|
||||
#FIXME: sanity checks
|
||||
# TODO: predetermine the bounds
|
||||
# l_bound_ens_aff = min(mean_ens_affintiy_by_position['avg_ens_affinity_scaled'])
|
||||
# u_bound_ens_aff = max(mean_ens_affintiy_by_position['avg_ens_affinity_scaled'])
|
||||
#
|
||||
# if ( (l_bound_ens_aff == -1) && (u_bound_ens_aff == 1) ){
|
||||
# cat(paste0("PASS: ensemble affinity scores averaged by position and then scaled"
|
||||
# , "\nmin ensemble averaged affinity: ", l_bound_ens_aff
|
||||
# , "\nmax ensemble averaged affinity: ", u_bound_ens_aff))
|
||||
# }else{
|
||||
# cat(paste0("FAIL: ensemble affinity scores could not be scaled b/w -1 and 1"
|
||||
# , "\nmin ensemble averaged affinity: ", l_bound_ens_aff
|
||||
# , "\nmax ensemble averaged affinity: ", u_bound_ens_aff))
|
||||
# quit()
|
||||
# }
|
||||
|
||||
|
||||
######################################################################
|
||||
|
|
|
@ -55,7 +55,8 @@ common_cols = c("mutationinformation"
|
|||
, "dst_mode"
|
||||
, "mutation_info_labels"
|
||||
, "sensitivity"
|
||||
, "ligand_distance")
|
||||
, "ligand_distance"
|
||||
, "interface_dist")
|
||||
|
||||
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
|
||||
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
|
||||
|
@ -117,11 +118,13 @@ outcome_cols_affinity = c( "ligand_outcome"
|
|||
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols
|
||||
, raw_cols_stability
|
||||
, scaled_cols_stability
|
||||
, outcome_cols_stability)]
|
||||
, outcome_cols_stability
|
||||
, raw_cols_affinity
|
||||
, scaled_cols_affinity
|
||||
, outcome_cols_affinity)]
|
||||
|
||||
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols
|
||||
, outcome_cols_stability)]
|
||||
|
||||
##############################################################
|
||||
#####################
|
||||
# Ensemble stability: outcome_cols_stability
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue