moved old lineage_basic_barplot.R to redundant
This commit is contained in:
parent
3cee341170
commit
c9519b3b56
2 changed files with 515 additions and 0 deletions
214
scripts/plotting/redundant/lineage_basic_barplot.R
Normal file
214
scripts/plotting/redundant/lineage_basic_barplot.R
Normal file
|
@ -0,0 +1,214 @@
|
|||
#!/usr/bin/env Rscript
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting/")
|
||||
getwd()
|
||||
#########################################################
|
||||
# TASK: Basic lineage barplot showing numbers
|
||||
|
||||
# Output: Basic barplot with lineage samples and mut count
|
||||
|
||||
##########################################################
|
||||
# Installing and loading required packages
|
||||
##########################################################
|
||||
source("Header_TT.R")
|
||||
require(data.table)
|
||||
source("combining_dfs_plotting.R")
|
||||
# should return the following dfs, directories and variables
|
||||
|
||||
# PS combined:
|
||||
# 1) merged_df2
|
||||
# 2) merged_df2_comp
|
||||
# 3) merged_df3
|
||||
# 4) merged_df3_comp
|
||||
|
||||
# LIG combined:
|
||||
# 5) merged_df2_lig
|
||||
# 6) merged_df2_comp_lig
|
||||
# 7) merged_df3_lig
|
||||
# 8) merged_df3_comp_lig
|
||||
|
||||
# 9) my_df_u
|
||||
# 10) my_df_u_lig
|
||||
|
||||
cat("Directories imported:"
|
||||
, "\n===================="
|
||||
, "\ndatadir:", datadir
|
||||
, "\nindir:", indir
|
||||
, "\noutdir:", outdir
|
||||
, "\nplotdir:", plotdir)
|
||||
|
||||
cat("Variables imported:"
|
||||
, "\n====================="
|
||||
, "\ndrug:", drug
|
||||
, "\ngene:", gene
|
||||
, "\ngene_match:", gene_match
|
||||
, "\nAngstrom symbol:", angstroms_symbol
|
||||
, "\nNo. of duplicated muts:", dup_muts_nu
|
||||
, "\nNA count for ORs:", na_count
|
||||
, "\nNA count in df2:", na_count_df2
|
||||
, "\nNA count in df3:", na_count_df3
|
||||
, "\ndr_muts_col:", dr_muts_col
|
||||
, "\nother_muts_col:", other_muts_col
|
||||
, "\ndrtype_col:", resistance_col)
|
||||
|
||||
|
||||
#===========
|
||||
# input
|
||||
#===========
|
||||
# output of combining_dfs_plotting.R
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
# plot 1
|
||||
basic_bp_lineage = "basic_lineage_barplot.svg"
|
||||
plot_basic_bp_lineage = paste0(plotdir,"/", basic_bp_lineage)
|
||||
|
||||
#=======================================================================
|
||||
#================
|
||||
# Data for plots:
|
||||
# you need merged_df2, comprehensive one
|
||||
# since this has one-many relationship
|
||||
# i.e the same SNP can belong to multiple lineages
|
||||
#================
|
||||
# REASSIGNMENT as necessary
|
||||
my_df = merged_df2
|
||||
|
||||
# clear excess variable
|
||||
rm(merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
is.factor(my_df$lineage)
|
||||
my_df$lineage = as.factor(my_df$lineage)
|
||||
is.factor(my_df$lineage)
|
||||
|
||||
#==========================
|
||||
# Plot: Lineage barplot
|
||||
# x = lineage y = No. of samples
|
||||
# col = Lineage
|
||||
# fill = lineage
|
||||
#============================
|
||||
table(my_df$lineage)
|
||||
as.data.frame(table(my_df$lineage))
|
||||
|
||||
#=============
|
||||
# Data for plots
|
||||
#=============
|
||||
# REASSIGNMENT
|
||||
df <- my_df
|
||||
|
||||
rm(my_df)
|
||||
|
||||
# get freq count of positions so you can subset freq<1
|
||||
#setDT(df)[, lineage_count := .N, by = .(lineage)]
|
||||
|
||||
#******************
|
||||
# generate plot: barplot of mutation by lineage
|
||||
#******************
|
||||
sel_lineages = c("lineage1"
|
||||
, "lineage2"
|
||||
, "lineage3"
|
||||
, "lineage4"
|
||||
#, "lineage5"
|
||||
#, "lineage6"
|
||||
#, "lineage7"
|
||||
)
|
||||
|
||||
df_lin = subset(df, subset = lineage %in% sel_lineages)
|
||||
|
||||
# Create df with lineage inform & no. of unique mutations
|
||||
# per lineage and total samples within lineage
|
||||
# this is essentially barplot with two y axis
|
||||
|
||||
bar = bar = as.data.frame(sel_lineages) #4, 1
|
||||
total_snps_u = NULL
|
||||
total_samples = NULL
|
||||
|
||||
for (i in sel_lineages){
|
||||
#print(i)
|
||||
curr_total = length(unique(df$id)[df$lineage==i])
|
||||
total_samples = c(total_samples, curr_total)
|
||||
print(total_samples)
|
||||
|
||||
foo = df[df$lineage==i,]
|
||||
print(paste0(i, "======="))
|
||||
print(length(unique(foo$mutationinformation)))
|
||||
curr_count = length(unique(foo$mutationinformation))
|
||||
|
||||
total_snps_u = c(total_snps_u, curr_count)
|
||||
}
|
||||
|
||||
print(total_snps_u)
|
||||
bar$num_snps_u = total_snps_u
|
||||
bar$total_samples = total_samples
|
||||
bar
|
||||
|
||||
#*****************
|
||||
# generate plot: lineage barplot with two y-axis
|
||||
#https://stackoverflow.com/questions/13035295/overlay-bar-graphs-in-ggplot2
|
||||
#*****************
|
||||
|
||||
y1 = bar$num_snps_u
|
||||
y2 = bar$total_samples
|
||||
x = sel_lineages
|
||||
|
||||
to_plot = data.frame(x = x
|
||||
, y1 = y1
|
||||
, y2 = y2)
|
||||
to_plot
|
||||
|
||||
# FIXME later: will be depricated!
|
||||
melted = melt(to_plot, id = "x")
|
||||
melted
|
||||
|
||||
|
||||
svg(plot_basic_bp_lineage)
|
||||
|
||||
my_ats = 20 # axis text size
|
||||
my_als = 22 # axis label size
|
||||
|
||||
g = ggplot(melted, aes(x = x
|
||||
, y = value
|
||||
, fill = variable))
|
||||
|
||||
printFile = g + geom_bar(stat = "identity"
|
||||
, position = position_stack(reverse = TRUE)
|
||||
, alpha=.75
|
||||
, colour='grey75') +
|
||||
theme(axis.text.x = element_text(size = my_ats)
|
||||
, axis.text.y = element_text(size = my_ats
|
||||
#, angle = 30
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_als
|
||||
, colour = 'black')
|
||||
, axis.title.y = element_text(size = my_als
|
||||
, colour = 'black')
|
||||
, legend.position = "top"
|
||||
, legend.text = element_text(size = my_als)) +
|
||||
#geom_text() +
|
||||
geom_label(aes(label = value)
|
||||
, size = 5
|
||||
, hjust = 0.5
|
||||
, vjust = 0.5
|
||||
, colour = 'black'
|
||||
, show.legend = FALSE
|
||||
#, check_overlap = TRUE
|
||||
, position = position_stack(reverse = T)) +
|
||||
labs(title = ''
|
||||
, x = ''
|
||||
, y = "Number"
|
||||
, fill = 'Variable'
|
||||
, colour = 'black') +
|
||||
scale_fill_manual(values = c('grey50', 'gray75')
|
||||
, name=''
|
||||
, labels=c('Mutations', 'Total Samples')) +
|
||||
scale_x_discrete(breaks = c('lineage1', 'lineage2', 'lineage3', 'lineage4')
|
||||
, labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4'))
|
||||
|
||||
print(printFile)
|
||||
dev.off()
|
301
scripts/plotting/redundant/other_plots_data_SAFEGUARD.R
Normal file
301
scripts/plotting/redundant/other_plots_data_SAFEGUARD.R
Normal file
|
@ -0,0 +1,301 @@
|
|||
#!/usr/bin/env Rscript
|
||||
#########################################################
|
||||
# TASK: producing boxplots for dr and other muts
|
||||
|
||||
#########################################################
|
||||
#=======================================================================
|
||||
# working dir and loading libraries
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
#source("Header_TT.R")
|
||||
library(ggplot2)
|
||||
library(data.table)
|
||||
library(dplyr)
|
||||
library(tidyverse)
|
||||
source("combining_dfs_plotting.R")
|
||||
|
||||
rm(merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig
|
||||
, merged_df3_comp, merged_df3_comp_lig
|
||||
, my_df_u, my_df_u_lig)
|
||||
|
||||
|
||||
cols_to_select = c("mutation", "mutationinformation"
|
||||
, "wild_type", "position", "mutant_type"
|
||||
, "mutation_info")
|
||||
|
||||
merged_df3_short = merged_df3[, cols_to_select]
|
||||
|
||||
# write merged_df3 to generate structural figure
|
||||
write.csv(merged_df3_short, "merged_df3_short.csv")
|
||||
|
||||
#========================================================================
|
||||
#%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT: PS
|
||||
#%%%%%%%%%%%%%%%%%%%%
|
||||
df_ps = merged_df3
|
||||
|
||||
#============================
|
||||
# adding foldx scaled values
|
||||
# scale data b/w -1 and 1
|
||||
#============================
|
||||
n = which(colnames(df_ps) == "ddg"); n
|
||||
|
||||
my_min = min(df_ps[,n]); my_min
|
||||
my_max = max(df_ps[,n]); my_max
|
||||
|
||||
df_ps$foldx_scaled = ifelse(df_ps[,n] < 0
|
||||
, df_ps[,n]/abs(my_min)
|
||||
, df_ps[,n]/my_max)
|
||||
# sanity check
|
||||
my_min = min(df_ps$foldx_scaled); my_min
|
||||
my_max = max(df_ps$foldx_scaled); my_max
|
||||
|
||||
if (my_min == -1 && my_max == 1){
|
||||
cat("PASS: foldx ddg successfully scaled b/w -1 and 1"
|
||||
, "\nProceeding with assigning foldx outcome category")
|
||||
}else{
|
||||
cat("FAIL: could not scale foldx ddg values"
|
||||
, "Aborting!")
|
||||
}
|
||||
|
||||
#================================
|
||||
# adding foldx outcome category
|
||||
# ddg<0 = "Stabilising" (-ve)
|
||||
#=================================
|
||||
|
||||
c1 = table(df_ps$ddg < 0)
|
||||
df_ps$foldx_outcome = ifelse(df_ps$ddg < 0, "Stabilising", "Destabilising")
|
||||
c2 = table(df_ps$ddg < 0)
|
||||
|
||||
if ( all(c1 == c2) ){
|
||||
cat("PASS: foldx outcome successfully created")
|
||||
}else{
|
||||
cat("FAIL: foldx outcome could not be created. Aborting!")
|
||||
exit()
|
||||
}
|
||||
#=======================================================================
|
||||
# name tidying
|
||||
df_ps$mutation_info = as.factor(df_ps$mutation_info)
|
||||
df_ps$duet_outcome = as.factor(df_ps$duet_outcome)
|
||||
df_ps$foldx_outcome = as.factor(df_ps$foldx_outcome)
|
||||
df_ps$ligand_outcome = as.factor(df_ps$ligand_outcome)
|
||||
|
||||
# check
|
||||
table(df_ps$mutation_info)
|
||||
|
||||
# further checks to make sure dr and other muts are indeed unique
|
||||
dr_muts = df_ps[df_ps$mutation_info == dr_muts_col,]
|
||||
dr_muts_names = unique(dr_muts$mutation)
|
||||
|
||||
other_muts = df_ps[df_ps$mutation_info == other_muts_col,]
|
||||
other_muts_names = unique(other_muts$mutation)
|
||||
|
||||
if ( table(dr_muts_names%in%other_muts_names)[[1]] == length(dr_muts_names) &&
|
||||
table(other_muts_names%in%dr_muts_names)[[1]] == length(other_muts_names) ){
|
||||
cat("PASS: dr and other muts are indeed unique")
|
||||
}else{
|
||||
cat("FAIL: dr adn others muts are NOT unique!")
|
||||
quit()
|
||||
}
|
||||
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT: LIG
|
||||
#%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
df_lig = merged_df3_lig
|
||||
|
||||
# name tidying
|
||||
df_lig$mutation_info = as.factor(df_lig$mutation_info)
|
||||
df_lig$duet_outcome = as.factor(df_lig$duet_outcome)
|
||||
#df_lig$ligand_outcome = as.factor(df_lig$ligand_outcome)
|
||||
|
||||
# check
|
||||
table(df_lig$mutation_info)
|
||||
|
||||
#========================================================================
|
||||
#===========
|
||||
# Data: ps
|
||||
#===========
|
||||
# keep similar dtypes cols together
|
||||
cols_to_select_ps = c("mutationinformation", "mutation", "position", "mutation_info"
|
||||
, "duet_outcome"
|
||||
|
||||
, "duet_scaled"
|
||||
, "ligand_distance"
|
||||
, "asa"
|
||||
, "rsa"
|
||||
, "rd_values"
|
||||
, "kd_values")
|
||||
|
||||
df_wf_ps = df_ps[, cols_to_select_ps]
|
||||
|
||||
pivot_cols_ps = cols_to_select_ps[1:5]; pivot_cols_ps
|
||||
|
||||
expected_rows_lf_ps = nrow(df_wf_ps) * (length(df_wf_ps) - length(pivot_cols_ps))
|
||||
expected_rows_lf_ps
|
||||
|
||||
# LF data: duet
|
||||
df_lf_ps = gather(df_wf_ps, param_type, param_value, duet_scaled:kd_values, factor_key=TRUE)
|
||||
|
||||
if (nrow(df_lf_ps) == expected_rows_lf_ps){
|
||||
cat("PASS: long format data created for duet")
|
||||
}else{
|
||||
cat("FAIL: long format data could not be created for duet")
|
||||
exit()
|
||||
}
|
||||
|
||||
str(df_wf_ps)
|
||||
str(df_lf_ps)
|
||||
|
||||
# assign pretty labels: param_type
|
||||
levels(df_lf_ps$param_type); table(df_lf_ps$param_type)
|
||||
|
||||
ligand_dist_colname = paste0("Distance to ligand (", angstroms_symbol, ")")
|
||||
ligand_dist_colname
|
||||
|
||||
duet_stability_name = paste0(delta_symbol, delta_symbol, "G")
|
||||
duet_stability_name
|
||||
|
||||
#levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- "Stability"
|
||||
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- duet_stability_name
|
||||
#levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- "Ligand Distance"
|
||||
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- ligand_dist_colname
|
||||
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="asa"] <- "ASA"
|
||||
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rsa"] <- "RSA"
|
||||
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rd_values"] <- "RD"
|
||||
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="kd_values"] <- "KD"
|
||||
# check
|
||||
levels(df_lf_ps$param_type); table(df_lf_ps$param_type)
|
||||
|
||||
# assign pretty labels: mutation_info
|
||||
levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info)
|
||||
sum(table(df_lf_ps$mutation_info)) == nrow(df_lf_ps)
|
||||
|
||||
levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==dr_muts_col] <- "DM"
|
||||
levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==other_muts_col] <- "OM"
|
||||
# check
|
||||
levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info)
|
||||
|
||||
############################################################################
|
||||
|
||||
#===========
|
||||
# LF data: LIG
|
||||
#===========
|
||||
# keep similar dtypes cols together
|
||||
cols_to_select_lig = c("mutationinformation", "mutation", "position", "mutation_info"
|
||||
, "ligand_outcome"
|
||||
|
||||
, "affinity_scaled"
|
||||
#, "ligand_distance"
|
||||
, "asa"
|
||||
, "rsa"
|
||||
, "rd_values"
|
||||
, "kd_values")
|
||||
|
||||
df_wf_lig = df_lig[, cols_to_select_lig]
|
||||
|
||||
pivot_cols_lig = cols_to_select_lig[1:5]; pivot_cols_lig
|
||||
|
||||
expected_rows_lf_lig = nrow(df_wf_lig) * (length(df_wf_lig) - length(pivot_cols_lig))
|
||||
expected_rows_lf_lig
|
||||
|
||||
# LF data: foldx
|
||||
df_lf_lig = gather(df_wf_lig, param_type, param_value, affinity_scaled:kd_values, factor_key=TRUE)
|
||||
|
||||
if (nrow(df_lf_lig) == expected_rows_lf_lig){
|
||||
cat("PASS: long format data created for foldx")
|
||||
}else{
|
||||
cat("FAIL: long format data could not be created for foldx")
|
||||
exit()
|
||||
}
|
||||
|
||||
# assign pretty labels: param_type
|
||||
levels(df_lf_lig$param_type); table(df_lf_lig$param_type)
|
||||
|
||||
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="affinity_scaled"] <- "Ligand Affinity"
|
||||
#levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="ligand_distance"] <- "Ligand Distance"
|
||||
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="asa"] <- "ASA"
|
||||
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rsa"] <- "RSA"
|
||||
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rd_values"] <- "RD"
|
||||
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="kd_values"] <- "KD"
|
||||
#check
|
||||
levels(df_lf_lig$param_type); table(df_lf_lig$param_type)
|
||||
|
||||
# assign pretty labels: mutation_info
|
||||
levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info)
|
||||
sum(table(df_lf_lig$mutation_info)) == nrow(df_lf_lig)
|
||||
|
||||
levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==dr_muts_col] <- "DM"
|
||||
levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==other_muts_col] <- "OM"
|
||||
# check
|
||||
levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info)
|
||||
|
||||
#############################################################################
|
||||
#===========
|
||||
# Data: foldx
|
||||
#===========
|
||||
# keep similar dtypes cols together
|
||||
cols_to_select_foldx = c("mutationinformation", "mutation", "position", "mutation_info"
|
||||
, "foldx_outcome"
|
||||
|
||||
, "foldx_scaled")
|
||||
#, "ligand_distance"
|
||||
#, "asa"
|
||||
#, "rsa"
|
||||
#, "rd_values"
|
||||
#, "kd_values")
|
||||
|
||||
|
||||
df_wf_foldx = df_ps[, cols_to_select_foldx]
|
||||
|
||||
pivot_cols_foldx = cols_to_select_foldx[1:5]; pivot_cols_foldx
|
||||
|
||||
expected_rows_lf_foldx = nrow(df_wf_foldx) * (length(df_wf_foldx) - length(pivot_cols_foldx))
|
||||
expected_rows_lf_foldx
|
||||
|
||||
# LF data: foldx
|
||||
df_lf_foldx = gather(df_wf_foldx, param_type, param_value, foldx_scaled, factor_key=TRUE)
|
||||
|
||||
if (nrow(df_lf_foldx) == expected_rows_lf_foldx){
|
||||
cat("PASS: long format data created for foldx")
|
||||
}else{
|
||||
cat("FAIL: long format data could not be created for foldx")
|
||||
exit()
|
||||
}
|
||||
|
||||
foldx_stability_name = paste0(delta_symbol, delta_symbol, "G")
|
||||
foldx_stability_name
|
||||
|
||||
# assign pretty labels: param type
|
||||
levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type)
|
||||
|
||||
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- "Stability"
|
||||
levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- foldx_stability_name
|
||||
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="ligand_distance"] <- "Ligand Distance"
|
||||
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="asa"] <- "ASA"
|
||||
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rsa"] <- "RSA"
|
||||
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rd_values"] <- "RD"
|
||||
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="kd_values"] <- "KD"
|
||||
# check
|
||||
levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type)
|
||||
|
||||
# assign pretty labels: mutation_info
|
||||
levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info)
|
||||
sum(table(df_lf_foldx$mutation_info)) == nrow(df_lf_foldx)
|
||||
|
||||
levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==dr_muts_col] <- "DM"
|
||||
levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==other_muts_col] <- "OM"
|
||||
# check
|
||||
levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info)
|
||||
|
||||
############################################################################
|
||||
|
||||
# clear excess variables
|
||||
rm(cols_to_select_ps, cols_to_select_foldx, cols_to_select_lig
|
||||
, pivot_cols_ps, pivot_cols_foldx, pivot_cols_lig
|
||||
, expected_rows_lf_ps, expected_rows_lf_foldx, expected_rows_lf_lig
|
||||
, my_max, my_min, na_count, na_count_df2, na_count_df3, dup_muts_nu
|
||||
, c1, c2, n)
|
Loading…
Add table
Add a link
Reference in a new issue