moved old lineage_basic_barplot.R to redundant

This commit is contained in:
Tanushree Tunstall 2021-09-07 10:52:26 +01:00
parent 3cee341170
commit c9519b3b56
2 changed files with 515 additions and 0 deletions

View file

@ -0,0 +1,214 @@
#!/usr/bin/env Rscript
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
#########################################################
# TASK: Basic lineage barplot showing numbers
# Output: Basic barplot with lineage samples and mut count
##########################################################
# Installing and loading required packages
##########################################################
source("Header_TT.R")
require(data.table)
source("combining_dfs_plotting.R")
# should return the following dfs, directories and variables
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat("Directories imported:"
, "\n===================="
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir)
cat("Variables imported:"
, "\n====================="
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3
, "\ndr_muts_col:", dr_muts_col
, "\nother_muts_col:", other_muts_col
, "\ndrtype_col:", resistance_col)
#===========
# input
#===========
# output of combining_dfs_plotting.R
#=======
# output
#=======
# plot 1
basic_bp_lineage = "basic_lineage_barplot.svg"
plot_basic_bp_lineage = paste0(plotdir,"/", basic_bp_lineage)
#=======================================================================
#================
# Data for plots:
# you need merged_df2, comprehensive one
# since this has one-many relationship
# i.e the same SNP can belong to multiple lineages
#================
# REASSIGNMENT as necessary
my_df = merged_df2
# clear excess variable
rm(merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_df)
str(my_df)
# Ensure correct data type in columns to plot: need to be factor
is.factor(my_df$lineage)
my_df$lineage = as.factor(my_df$lineage)
is.factor(my_df$lineage)
#==========================
# Plot: Lineage barplot
# x = lineage y = No. of samples
# col = Lineage
# fill = lineage
#============================
table(my_df$lineage)
as.data.frame(table(my_df$lineage))
#=============
# Data for plots
#=============
# REASSIGNMENT
df <- my_df
rm(my_df)
# get freq count of positions so you can subset freq<1
#setDT(df)[, lineage_count := .N, by = .(lineage)]
#******************
# generate plot: barplot of mutation by lineage
#******************
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4"
#, "lineage5"
#, "lineage6"
#, "lineage7"
)
df_lin = subset(df, subset = lineage %in% sel_lineages)
# Create df with lineage inform & no. of unique mutations
# per lineage and total samples within lineage
# this is essentially barplot with two y axis
bar = bar = as.data.frame(sel_lineages) #4, 1
total_snps_u = NULL
total_samples = NULL
for (i in sel_lineages){
#print(i)
curr_total = length(unique(df$id)[df$lineage==i])
total_samples = c(total_samples, curr_total)
print(total_samples)
foo = df[df$lineage==i,]
print(paste0(i, "======="))
print(length(unique(foo$mutationinformation)))
curr_count = length(unique(foo$mutationinformation))
total_snps_u = c(total_snps_u, curr_count)
}
print(total_snps_u)
bar$num_snps_u = total_snps_u
bar$total_samples = total_samples
bar
#*****************
# generate plot: lineage barplot with two y-axis
#https://stackoverflow.com/questions/13035295/overlay-bar-graphs-in-ggplot2
#*****************
y1 = bar$num_snps_u
y2 = bar$total_samples
x = sel_lineages
to_plot = data.frame(x = x
, y1 = y1
, y2 = y2)
to_plot
# FIXME later: will be depricated!
melted = melt(to_plot, id = "x")
melted
svg(plot_basic_bp_lineage)
my_ats = 20 # axis text size
my_als = 22 # axis label size
g = ggplot(melted, aes(x = x
, y = value
, fill = variable))
printFile = g + geom_bar(stat = "identity"
, position = position_stack(reverse = TRUE)
, alpha=.75
, colour='grey75') +
theme(axis.text.x = element_text(size = my_ats)
, axis.text.y = element_text(size = my_ats
#, angle = 30
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = my_als
, colour = 'black')
, axis.title.y = element_text(size = my_als
, colour = 'black')
, legend.position = "top"
, legend.text = element_text(size = my_als)) +
#geom_text() +
geom_label(aes(label = value)
, size = 5
, hjust = 0.5
, vjust = 0.5
, colour = 'black'
, show.legend = FALSE
#, check_overlap = TRUE
, position = position_stack(reverse = T)) +
labs(title = ''
, x = ''
, y = "Number"
, fill = 'Variable'
, colour = 'black') +
scale_fill_manual(values = c('grey50', 'gray75')
, name=''
, labels=c('Mutations', 'Total Samples')) +
scale_x_discrete(breaks = c('lineage1', 'lineage2', 'lineage3', 'lineage4')
, labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4'))
print(printFile)
dev.off()

View file

@ -0,0 +1,301 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: producing boxplots for dr and other muts
#########################################################
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
#source("Header_TT.R")
library(ggplot2)
library(data.table)
library(dplyr)
library(tidyverse)
source("combining_dfs_plotting.R")
rm(merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig
, merged_df3_comp, merged_df3_comp_lig
, my_df_u, my_df_u_lig)
cols_to_select = c("mutation", "mutationinformation"
, "wild_type", "position", "mutant_type"
, "mutation_info")
merged_df3_short = merged_df3[, cols_to_select]
# write merged_df3 to generate structural figure
write.csv(merged_df3_short, "merged_df3_short.csv")
#========================================================================
#%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT: PS
#%%%%%%%%%%%%%%%%%%%%
df_ps = merged_df3
#============================
# adding foldx scaled values
# scale data b/w -1 and 1
#============================
n = which(colnames(df_ps) == "ddg"); n
my_min = min(df_ps[,n]); my_min
my_max = max(df_ps[,n]); my_max
df_ps$foldx_scaled = ifelse(df_ps[,n] < 0
, df_ps[,n]/abs(my_min)
, df_ps[,n]/my_max)
# sanity check
my_min = min(df_ps$foldx_scaled); my_min
my_max = max(df_ps$foldx_scaled); my_max
if (my_min == -1 && my_max == 1){
cat("PASS: foldx ddg successfully scaled b/w -1 and 1"
, "\nProceeding with assigning foldx outcome category")
}else{
cat("FAIL: could not scale foldx ddg values"
, "Aborting!")
}
#================================
# adding foldx outcome category
# ddg<0 = "Stabilising" (-ve)
#=================================
c1 = table(df_ps$ddg < 0)
df_ps$foldx_outcome = ifelse(df_ps$ddg < 0, "Stabilising", "Destabilising")
c2 = table(df_ps$ddg < 0)
if ( all(c1 == c2) ){
cat("PASS: foldx outcome successfully created")
}else{
cat("FAIL: foldx outcome could not be created. Aborting!")
exit()
}
#=======================================================================
# name tidying
df_ps$mutation_info = as.factor(df_ps$mutation_info)
df_ps$duet_outcome = as.factor(df_ps$duet_outcome)
df_ps$foldx_outcome = as.factor(df_ps$foldx_outcome)
df_ps$ligand_outcome = as.factor(df_ps$ligand_outcome)
# check
table(df_ps$mutation_info)
# further checks to make sure dr and other muts are indeed unique
dr_muts = df_ps[df_ps$mutation_info == dr_muts_col,]
dr_muts_names = unique(dr_muts$mutation)
other_muts = df_ps[df_ps$mutation_info == other_muts_col,]
other_muts_names = unique(other_muts$mutation)
if ( table(dr_muts_names%in%other_muts_names)[[1]] == length(dr_muts_names) &&
table(other_muts_names%in%dr_muts_names)[[1]] == length(other_muts_names) ){
cat("PASS: dr and other muts are indeed unique")
}else{
cat("FAIL: dr adn others muts are NOT unique!")
quit()
}
#%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT: LIG
#%%%%%%%%%%%%%%%%%%%%
df_lig = merged_df3_lig
# name tidying
df_lig$mutation_info = as.factor(df_lig$mutation_info)
df_lig$duet_outcome = as.factor(df_lig$duet_outcome)
#df_lig$ligand_outcome = as.factor(df_lig$ligand_outcome)
# check
table(df_lig$mutation_info)
#========================================================================
#===========
# Data: ps
#===========
# keep similar dtypes cols together
cols_to_select_ps = c("mutationinformation", "mutation", "position", "mutation_info"
, "duet_outcome"
, "duet_scaled"
, "ligand_distance"
, "asa"
, "rsa"
, "rd_values"
, "kd_values")
df_wf_ps = df_ps[, cols_to_select_ps]
pivot_cols_ps = cols_to_select_ps[1:5]; pivot_cols_ps
expected_rows_lf_ps = nrow(df_wf_ps) * (length(df_wf_ps) - length(pivot_cols_ps))
expected_rows_lf_ps
# LF data: duet
df_lf_ps = gather(df_wf_ps, param_type, param_value, duet_scaled:kd_values, factor_key=TRUE)
if (nrow(df_lf_ps) == expected_rows_lf_ps){
cat("PASS: long format data created for duet")
}else{
cat("FAIL: long format data could not be created for duet")
exit()
}
str(df_wf_ps)
str(df_lf_ps)
# assign pretty labels: param_type
levels(df_lf_ps$param_type); table(df_lf_ps$param_type)
ligand_dist_colname = paste0("Distance to ligand (", angstroms_symbol, ")")
ligand_dist_colname
duet_stability_name = paste0(delta_symbol, delta_symbol, "G")
duet_stability_name
#levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- "Stability"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="duet_scaled"] <- duet_stability_name
#levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- "Ligand Distance"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="ligand_distance"] <- ligand_dist_colname
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="asa"] <- "ASA"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rsa"] <- "RSA"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="rd_values"] <- "RD"
levels(df_lf_ps$param_type)[levels(df_lf_ps$param_type)=="kd_values"] <- "KD"
# check
levels(df_lf_ps$param_type); table(df_lf_ps$param_type)
# assign pretty labels: mutation_info
levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info)
sum(table(df_lf_ps$mutation_info)) == nrow(df_lf_ps)
levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==dr_muts_col] <- "DM"
levels(df_lf_ps$mutation_info)[levels(df_lf_ps$mutation_info)==other_muts_col] <- "OM"
# check
levels(df_lf_ps$mutation_info); table(df_lf_ps$mutation_info)
############################################################################
#===========
# LF data: LIG
#===========
# keep similar dtypes cols together
cols_to_select_lig = c("mutationinformation", "mutation", "position", "mutation_info"
, "ligand_outcome"
, "affinity_scaled"
#, "ligand_distance"
, "asa"
, "rsa"
, "rd_values"
, "kd_values")
df_wf_lig = df_lig[, cols_to_select_lig]
pivot_cols_lig = cols_to_select_lig[1:5]; pivot_cols_lig
expected_rows_lf_lig = nrow(df_wf_lig) * (length(df_wf_lig) - length(pivot_cols_lig))
expected_rows_lf_lig
# LF data: foldx
df_lf_lig = gather(df_wf_lig, param_type, param_value, affinity_scaled:kd_values, factor_key=TRUE)
if (nrow(df_lf_lig) == expected_rows_lf_lig){
cat("PASS: long format data created for foldx")
}else{
cat("FAIL: long format data could not be created for foldx")
exit()
}
# assign pretty labels: param_type
levels(df_lf_lig$param_type); table(df_lf_lig$param_type)
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="affinity_scaled"] <- "Ligand Affinity"
#levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="ligand_distance"] <- "Ligand Distance"
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="asa"] <- "ASA"
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rsa"] <- "RSA"
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="rd_values"] <- "RD"
levels(df_lf_lig$param_type)[levels(df_lf_lig$param_type)=="kd_values"] <- "KD"
#check
levels(df_lf_lig$param_type); table(df_lf_lig$param_type)
# assign pretty labels: mutation_info
levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info)
sum(table(df_lf_lig$mutation_info)) == nrow(df_lf_lig)
levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==dr_muts_col] <- "DM"
levels(df_lf_lig$mutation_info)[levels(df_lf_lig$mutation_info)==other_muts_col] <- "OM"
# check
levels(df_lf_lig$mutation_info); table(df_lf_lig$mutation_info)
#############################################################################
#===========
# Data: foldx
#===========
# keep similar dtypes cols together
cols_to_select_foldx = c("mutationinformation", "mutation", "position", "mutation_info"
, "foldx_outcome"
, "foldx_scaled")
#, "ligand_distance"
#, "asa"
#, "rsa"
#, "rd_values"
#, "kd_values")
df_wf_foldx = df_ps[, cols_to_select_foldx]
pivot_cols_foldx = cols_to_select_foldx[1:5]; pivot_cols_foldx
expected_rows_lf_foldx = nrow(df_wf_foldx) * (length(df_wf_foldx) - length(pivot_cols_foldx))
expected_rows_lf_foldx
# LF data: foldx
df_lf_foldx = gather(df_wf_foldx, param_type, param_value, foldx_scaled, factor_key=TRUE)
if (nrow(df_lf_foldx) == expected_rows_lf_foldx){
cat("PASS: long format data created for foldx")
}else{
cat("FAIL: long format data could not be created for foldx")
exit()
}
foldx_stability_name = paste0(delta_symbol, delta_symbol, "G")
foldx_stability_name
# assign pretty labels: param type
levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type)
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- "Stability"
levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="foldx_scaled"] <- foldx_stability_name
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="ligand_distance"] <- "Ligand Distance"
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="asa"] <- "ASA"
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rsa"] <- "RSA"
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="rd_values"] <- "RD"
#levels(df_lf_foldx$param_type)[levels(df_lf_foldx$param_type)=="kd_values"] <- "KD"
# check
levels(df_lf_foldx$param_type); table(df_lf_foldx$param_type)
# assign pretty labels: mutation_info
levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info)
sum(table(df_lf_foldx$mutation_info)) == nrow(df_lf_foldx)
levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==dr_muts_col] <- "DM"
levels(df_lf_foldx$mutation_info)[levels(df_lf_foldx$mutation_info)==other_muts_col] <- "OM"
# check
levels(df_lf_foldx$mutation_info); table(df_lf_foldx$mutation_info)
############################################################################
# clear excess variables
rm(cols_to_select_ps, cols_to_select_foldx, cols_to_select_lig
, pivot_cols_ps, pivot_cols_foldx, pivot_cols_lig
, expected_rows_lf_ps, expected_rows_lf_foldx, expected_rows_lf_lig
, my_max, my_min, na_count, na_count_df2, na_count_df3, dup_muts_nu
, c1, c2, n)