added TODO for lineage2.R

This commit is contained in:
Tanushree Tunstall 2022-06-29 10:26:08 +01:00
parent aff7247e3b
commit c85c965c3e
2 changed files with 257 additions and 405 deletions

View file

@ -4,322 +4,227 @@ library("ggforce")
#install.packages("gginference")
library(gginference)
library(ggpubr)
#%% read data
df = read.csv("/home/tanu/git/Data/pyrazinamide/output/pnca_merged_df2.csv")
#df = read.csv("/home/tanu/git/Data/pyrazinamide/output/pnca_merged_df3.csv")
#df2 = read.csv("/home/tanu/git/Data/pyrazinamide/output/pnca_merged_df3.csv")
foo = as.data.frame(colnames(df))
my_df = df[ ,c('mutationinformation'
, 'snp_frequency'
, 'pos_count'
, 'lineage'
, 'lineage_multimode'
, 'dst'
, 'dst_mode')]
cols_to_subset = c('mutationinformation'
, 'snp_frequency'
, 'pos_count'
, 'position'
, 'lineage'
, 'lineage_multimode'
, 'dst'
, 'dst_multimode'
#, 'dst_multimode_all'
, 'dst_mode')
my_df = df[ ,cols_to_subset]
#df2 = df2[ ,cols_to_subset]
r24p_embb = df_embb[df_embb$mutationinformation == "R24P",]
tm = c("A102P", "M1T")
test = my_df[my_df$mutationinformation%in%tm,]
#test$dst2[is.na(test$dst)] <-test$dst_mode
test$dst2 = ifelse(is.na(test$dst), test$dst_mode, test$dst)
sum(table(test$dst2)) == nrow(test)
# Now we need to make a column that fill na in dst with value of dst_mode
my_df$dst2 = ifelse(is.na(my_df$dst), my_df$dst_mode, my_df$dst)
#%% create sensitivity column ~ dst_mode
my_df$sensitivity = ifelse(my_df$dst_mode == 1, "R", "S")
table(my_df$dst_mode)
table(my_df$sensitivity)
test = my_df[my_df$mutationinformation=="A102P",]
# fix the lineage_multimode labels
my_df$lineage_multimode
my_df$lineage_mm <- gsub("\\.0", "", my_df$lineage_multimode)
my_df$lineage_mm
my_df$lineage_mm <- gsub("\\[|||]", "", my_df$lineage_mm)
str(my_df$lineage_mm)
table(my_df$lineage_mm)
my_dfF = separate_rows(my_df, lineage_mm, sep = ",")
my_dfF = as.data.frame(my_dfF)
table(my_dfF$lineage_mm)
my_dfF$lineage_mm <- gsub(" ", "", my_dfF$lineage_mm)
table(my_dfF$lineage_mm)
# addd prefix L
my_dfF$lineage_mm = paste0("L", my_dfF$lineage_mm)
table(my_dfF$lineage_mm)
if (class(my_df) == class(my_dfF)){
cat('\nPASS: separated lineage multimode label column')
my_df = my_dfF
} else{
cat('\nFAIL: could not split lineage multimode column')
}
# select only L1-L4 and LBOV
sel_lineages = c("L1", "L2", "L3", "L4")
table(my_df$lineage_mm)
my_df2 = my_df[my_df$lineage_mm%in%sel_lineages,]
table(my_df2$lineage)
sum(table(my_df2$lineage_mm)) == nrow(my_df2)
dup_rows = my_df2[duplicated(my_df2[c('mutationinformation')]), ]
expected_nrows = nrow(my_df2) - nrow(dup_rows)
my_df3 = my_df2[!duplicated(my_df2[c('mutationinformation')]), ]
if ( nrow(my_df3) == expected_nrows ) {
cat('\nPASS: duplicated rows removed')
my_df$sensitivity = ifelse(my_df$dst2 == 1, "R", "S")
table(my_df$dst2)
if ( table(my_df$sensitivity)[2] == table(my_df$dst2)[1] && table(my_df$sensitivity)[1] == table(my_df$dst2)[2] ){
cat("\nProceeding with lineage resistance plots")
}else{
cat('\nFAIL: duplicated rows could not be removed')
stop("FAIL: could not verify dst2 and sensitivity numbers")
}
table(my_df3$lineage_mm)
str(my_df3$lineage_mm)
#%%
# select only L1-L4 and LBOV
sel_lineages1 = c("LBOV", "")
my_df2 = my_df[!my_df$lineage%in%sel_lineages1,]
table(my_df2$lineage)
# convert to factor
str(my_df3)
my_df3$lineage = as.factor(my_df3$lineage)
my_df3$lineage_mm = as.factor(my_df3$lineage_mm)
my_df3$sensitivity = as.factor(my_df3$sensitivity)
sel_lineages2 = c("L1", "L2", "L3", "L4")
my_df2 = my_df2[my_df2$lineage%in%sel_lineages2,]
table(my_df2$lineage)
str(my_df3$lineage_mm)
sum(table(my_df2$lineage)) == nrow(my_df2)
table(my_df2$lineage)
#df2 = my_df2[1:100,]
df2 = my_df3
sum(table(df2$mutationinformation))
# %%
# str(my_df2)
# my_df2$lineage = as.factor(my_df2$lineage)
# my_df2$sensitivity = as.factor(my_df2$sensitivity)
table(df2$lineage_mm)
str(df2$lineage_mm)
#df3 = df2[na.omit(df2$dst)]
#sum(is.na(df2$dst))
df3 = df2[!is.na(df2$dst), ]
nrow(df3)
#%% plot
#============
# facet wrap
#============
plot_data = df2
plot_data = df3
table(plot_data$mutationinformation, plot_data$lineage_mm, plot_data$dst)
test2 = my_df[1:500, ]
test2 = my_df
test2 = test2[test2$lineage%in%sel_lineages,]
nrow(test2)
# stats
f2 = test2[test2$mutationinformation == "Y95D",]
h = table(f2$lineage, f2$dst); h
h2 = table(f2$lineage, f2$dst_mode); h2
length(h)
length(h2)
f2 = test2[test2$mutationinformation == "Y95D",]
h = table(f2$lineage, f2$dst); h
h2 = table(f2$lineage, f2$sensitivity); h2
length(h)
length(h2)
tm = "G97A" # 1
tm = "L117R"
tm = "D63G"
tm = "A102P"
tm = "F13L"
tm = "E174G"
tm = "L182S"
tm = "L4S"
f3 = test2[test2$mutationinformation == tm,]
h3 = table(f3$lineage, f3$sensitivity); h3
print(h3)
print(class(h3))
print(dim(h3))
dim(h3)[1] # >1
dim(h3)[2] #>1
#h3 = table(f3$lineage); h3
length(h3)
h3v2 = table(f3$lineage, f3$sensitivity); h3v2
length(h3v2)
#if length is > 2, then get these
chisq.test(h3)
chisq.test(h3)$p.value
#ggchisqtest(chisq.test(h3))
fisher.test(h3)
fisher.test(h3)$p.value
#########################
#%% get only muts which belong to > 1 lineage and have different sensitivity classifications
muts = unique(my_df2$mutationinformation)
my_df = my_df2
#-----------------------------------------------
# step1 : get muts with more than one lineage
#-----------------------------------------------
lin_muts = NULL
for (i in muts) {
print (i)
s_mut = my_df[my_df$mutationinformation == i,]
s_mut = my_df2[my_df2$mutationinformation == i,]
s_tab = table(s_mut$lineage, s_mut$sensitivity)
#s_tab = table(s_mut$lineage)
#print(s_tab)
#if (length(s_tab) > 1 ){
# if (dim(s_tab)[1] > 1 ){
# lin_muts = c(lin_muts, i)
if (dim(s_tab)[1] > 1 && dim(s_tab)[2] > 1){
lin_muts = c(lin_muts, i)
}
}
cat("\nGot:", length(lin_muts), "mutations belonging to >1 lineage with differing drug sensitivities")
#-----------------------------------------------
# step 2: subset these muts for plotting
#-----------------------------------------------
plot_df = my_df2[my_df2$mutationinformation%in%lin_muts,]
# # now from the above list, get only the ones that have both R and S
# muts_var = NULL
# for (i in lin_muts) {
# print (i)
# s_mut = my_df[my_df$mutationinformation == i,]
# s_tab = table(s_mut$lineage, s_mut$sensitivity)
# print(s_tab)
# print(dim(s_tab)[2]) # if this is one, we are uninterested
# if ( dim(s_tab)[2] > 1 ){
# muts_var = c(muts_var, i)
# }
# }
# now final check
for (i in lin_muts) {
print (i)
s_mut = my_df[my_df$mutationinformation == i,]
s_tab = table(s_mut$lineage, s_mut$sensitivity)
print(s_tab)
print(c(i, "FT:", fisher.test(s_tab)$p.value))
# print(dim(s_tab)[2]) # if this is one, we are uninterested
# if ( dim(s_tab)[2] > 1 ){
# muts_var = c(muts_var, i)
# }
}
plot_df = my_df[my_df$mutationinformation%in%lin_muts,]
#plot_df2 = plot_df[plot_df$lineage%in%sel_lineages,]
table(plot_df$lineage)
length(unique(plot_df2$mutationinformation)) == length(lin_muts)
#muts_var
lin_mutsL = plot_df$mutationinformation[plot_df$mutationinformation%in%lin_muts]
plot_df$p.value = NULL
cat("\nnrow of plot_df:", nrow(plot_df))
#-----------------------------------------------
# step 3: Add p-value
#-----------------------------------------------
plot_df$pval = NULL
for (i in lin_muts) {
print (i)
s_mut = plot_df[plot_df$mutationinformation == i,]
print(s_mut)
s_tab = table(s_mut$lineage, s_mut$sensitivity)
print(s_tab)
ft_pvalue_i = round(fisher.test(s_tab)$p.value, 2)
ft_pvalue_i = round(fisher.test(s_tab)$p.value, 3)
print(ft_pvalue_i)
# #my_df[my_df['mutationinformation']==i,]['ft_pvalue']= ft_pvalue_i
#plot_df[plot_df['mutationinformation']==i,]['p.value']= ft_pvalue_i
plot_df$p.value[plot_df$mutationinformation == i] <- ft_pvalue_i
plot_df$pval[plot_df$mutationinformation == i] <- ft_pvalue_i
#print(s_tab)
}
plot_df2 = my_df[my_df$mutationinformation == c("A102P"),]
#https://stackoverflow.com/questions/72618364/how-to-use-geom-signif-from-ggpubr-with-a-chi-square-test
#########################
library(grid)
#sp2 + annotation_custom(grob)+facet_wrap(~cyl, scales="free")
grob <- grobTree(textGrob("Scatter plot", x=0.1, y=0.95, hjust=0,
gp=gpar(col="red", fontsize=5, fontface="italic")))
#############
chi.test <- function(a, b) {
return(chisq.test(cbind(a, b)))
}
head(plot_df$pval)
# format p value
plot_df$pvalF = ifelse(plot_df$pval < 0.05, paste0(plot_df$pval, "*"), plot_df$pval )
plot_df$pvalF
#================================================
# Plot attempt 1 [no stats]: WORKS beeautifully
#================================================
ggplot(plot_df, aes(x = lineage
#, y = snp_frequency
, fill = factor(sensitivity))) +
geom_bar(
stat = 'count'
#stat = 'identity'
, position = 'dodge') +
, fill = factor(sensitivity))) +
geom_bar(stat = 'count')+
#coord_cartesian(ylim = c(0, ypos_label)) +
facet_wrap(~mutationinformation
, scales = 'free_y') +
#coord_flip() +
stat_count(aes(y=..count../sum(..count..), label=p.value), geom="text", hjust=0)
, scales = 'free_y')
#================================================
#%% Plot attempt 2: with stats
#================================================
# small data set
tm3 = c("F94L", "A102P", "L4S", "L4W")
tm2 = c("L4W")
# Calculate stats: example
test2 = plot_df[plot_df$mutationinformation%in%tm2,]
table(test2$mutationinformation, test2$lineage, test2$sensitivity)
tm_tab = table(test2$lineage, test2$sensitivity)
tm_tab
fisher.test(tm_tab)
chisq.test(tm_tab)
#--------------------------------------------
# Plot test: 1 graph with fisher test stats
# precalculated
#-------------------------------------------
ggplot(test2, aes(x = lineage
, y = stat(count/sum(count))
, fill = factor(sensitivity))) +
geom_bar(stat = 'count') +
#geom_bar(stat = 'identity') +
facet_wrap(~mutationinformation
, scales = 'free_y') +
# geom_signif(comparisons = list(c("L2", "L3", "L4"))
# , test = "fisher.test"
# , position = 'identity') +
geom_label(aes(label = pval, vjust = 0))
# %% make a table
tm_tab_df = as.data.frame(tm_tab)
tm_tab_df
class(tm_tab_df)
colnames(tm_tab_df) = c("lineage", "sensitivity", "var_count")
tm_tab_df
fisher.test(tm_tab)
ggplot(tm_tab_df, aes(x = lineage
, y = var_count
, fill = sensitivity)) +
geom_bar(stat = "identity") +
geom_signif(comparisons = list(c("L1", "L2", "L3", "L4"))
, test = "fisher.test"
#, y = stat(count/sum(count))
)
#geom_signif(data = tm_tab_df, test = "fisher.test", map_signif_level = function(p) sprintf("p = %.2g", p) )
# try
test2 %>%
group_by(mutationinformation) %>%
count(lineage) %>%
#mutate(p_val = pval/1) %>%
#count(sensitivity, pval) %>%
#mutate(Freq = n / sum(n)) %>%
mutate(ypos_label = max(n))
#geom_text(aes(label = p.value, x = -0.5, y = 1))
#geom_text(data = data.frame(lineage = c("L1", "L2", "L3", "L4"), p.value = "p.value" ))
#geom_text(aes(label = p.value), stat = "count")
ggplot() +
#aes(lineage, Freq, fill = sensitivity) +
aes(lineage, n, fill = sensitivity) +
#geom_text(aes(label=after_stat(count)), vjust=0, stat = "count") # shows numbers
#geom_signif(comparisons = list(c("L1", "L2", "L3", "L4")), test = "fisher.test", y = 1)
geom_bar(stat = "identity") +
#geom_label(aes(label = pval, vjust = 0), x = 0.5, y = 5)
# geom_signif(data = data.frame(lineage = c("L1", "L2", "L3", "L4"),sensitivity = c("R", "S") )
# , test = "fisher.test" )
# , aes(y_position=c(5.3, 8.3), xmin=c(0.8, 0.8), xmax=c(1.2, 1.2))
# )
#geom_label(p.value)
#coord_flip()
# ggforce::facet_wrap_paginate(~mutationinformation
# , ncol = 5
# , nrow = 5
# , page = 10
# )
geom_signif(comparisons = list(c("L1", "L2", "L3", "L4"), na.rm = TRUE)
, test = "fisher.test")
#lin_muts_tb = test2 %>%
lin_muts_tb = plot_df %>%
group_by(mutationinformation) %>%
count(lineage) %>%
#mutate(p_val = pval/1) %>%
#count(sensitivity, pval) %>%
#mutate(Freq = n / sum(n)) %>%
mutate(ypos_label = max(n))
# with coord flip
ggplot(plot_data, aes(x = lineage_mm, fill = sensitivity)) +
geom_bar(position = 'dodge') +
facet_wrap(~mutationinformation) + coord_flip()
head(lin_muts_tb)
class(lin_muts_tb)
lin_muts_df = as.data.frame(lin_muts_tb)
class(lin_muts_df)
#intersect(names(test2), names(lin_muts_df))
intersect(names(plot_df), names(lin_muts_df))
sub_cols = c("mutationinformation", "ypos_label")
lin_muts_df2 = lin_muts_df[, sub_cols]
names(lin_muts_df2)
lin_muts_df2U = lin_muts_df2[!duplicated(lin_muts_df2),]
#class(lin_muts_df2); class(test2); class(lin_muts_df2U)
class(lin_muts_df2); class(plot_df); class(lin_muts_df2U)
#============
# facet grid
#============
ggplot(plot_data, aes(x = mutationinformation, fill = sensitivity)) +
geom_bar(position = 'dodge') +
facet_grid(~lineage_mm)
# with coord flip
ggplot(plot_data, aes(x = mutationinformation, fill = sensitivity)) +
geom_bar(position = 'dodge') +
facet_grid(~lineage_mm)+ coord_flip()
##########################################
#%% useful info
# https://stackoverflow.com/questions/13773770/split-comma-separated-strings-in-a-column-into-separate-rows
bardf = as.data.frame(bar)
class(bardf) == class(my_df)
baz = my_df
baz = baz %>%
mutate(col2 = strsplit(as.character(col2), ",")) %>%
unnest(col2)
baz = as.data.frame(baz)
class(baz) == class(bar)
#lin_muts_dfM = merge(test2, lin_muts_df2U, by = "mutationinformation", all.y = T)
lin_muts_dfM = merge(plot_df, lin_muts_df2U, by = "mutationinformation", all.y = T)
#if nrow(lin_muts_dfM) == nrow(test2)
nrow(lin_muts_dfM) == nrow(plot_df)
# now plot
ggplot(lin_muts_dfM, aes(x = lineage
#, y = snp_frequency
, fill = factor(sensitivity))) +
geom_bar(stat = 'count') +
#geom_bar(stat = "identity")+
facet_wrap(~mutationinformation
, scales = 'free_y') +
#geom_text(aes(label = p.value, x = 0.5, y = 5))
geom_label(aes(label = paste0("p=",pvalF), x = 2.5, ypos_label+1), fill="white")# +
#geom_text(aes(label = paste0("p=",pvalF), x = 2.5, ypos_label+1))# +
#geom_segment(aes(x = 1, y = ypos_label+0.5, xend = 4, yend = ypos_label+0.5))
#geom_hline(data = lin_muts_dfM, aes(yintercept=ypos_label+0.5))
#geom_bracket(data=lin_muts_dfM, aes(xmin = 1, xmax = 4, y.position = ypos_label+0.5, label=''))

View file

@ -4,9 +4,16 @@ library("ggforce")
#install.packages("gginference")
library(gginference)
library(ggpubr)
##################################################
#%% read data
# TODO: read data using gene and drug combination
# gene must be lowercase
# tolower(gene)
#################################################
df = read.csv("/home/tanu/git/Data/pyrazinamide/output/pnca_merged_df2.csv")
df2 = read.csv("/home/tanu/git/Data/pyrazinamide/output/pnca_merged_df3.csv")
#df2 = read.csv("/home/tanu/git/Data/pyrazinamide/output/pnca_merged_df3.csv")
foo = as.data.frame(colnames(df))
@ -64,8 +71,9 @@ table(my_df2$lineage)
#%% get only muts which belong to > 1 lineage and have different sensitivity classifications
muts = unique(my_df2$mutationinformation)
#-----------------------------------------------
# step1 : get muts with more than one lineage
#-----------------------------------------------
lin_muts = NULL
for (i in muts) {
print (i)
@ -77,13 +85,15 @@ for (i in muts) {
}
}
cat("\nGot:", length(lin_muts), "mutations belonging to >1 lineage with differing drug sensitivities")
# step2: subset these muts for plotting
#-----------------------------------------------
# step 2: subset these muts for plotting
#-----------------------------------------------
plot_df = my_df2[my_df2$mutationinformation%in%lin_muts,]
cat("\nnrow of plot_df:", nrow(plot_df))
# Add p-value
#-----------------------------------------------
# step 3: Add p-value
#-----------------------------------------------
plot_df$pval = NULL
for (i in lin_muts) {
print (i)
@ -91,161 +101,98 @@ for (i in lin_muts) {
print(s_mut)
s_tab = table(s_mut$lineage, s_mut$sensitivity)
print(s_tab)
ft_pvalue_i = round(fisher.test(s_tab)$p.value, 2)
ft_pvalue_i = round(fisher.test(s_tab)$p.value, 3)
print(ft_pvalue_i)
# #my_df[my_df['mutationinformation']==i,]['ft_pvalue']= ft_pvalue_i
#plot_df[plot_df['mutationinformation']==i,]['p.value']= ft_pvalue_i
plot_df$pval[plot_df$mutationinformation == i] <- ft_pvalue_i
#print(s_tab)
}
head(plot_df$pval)
#plot_df$ypos_label = plot_df$snp_frequency+0.8
# format p value
# TODO: add case statement for correct pvalue formatting
plot_df$pvalF = ifelse(plot_df$pval < 0.05, paste0(plot_df$pval, "*"), plot_df$pval )
plot_df$pvalF
#======================================
# Plot attempt 1: WORKS beeautifully
#======================================
#================================================
# Plot attempt 1 [no stats]: WORKS beeautifully
#================================================
ggplot(plot_df, aes(x = lineage
, fill = factor(sensitivity))) +
geom_bar(stat = 'count')+
#coord_cartesian(ylim = c(0, ypos_label)) +
facet_wrap(~mutationinformation
, scales = 'free_y')
######################
# geom_rect
ggplot(test2, aes(x = lineage
, fill = factor(sensitivity))) +
ggplot() +
geom_rect(data = plot_df
, aes(xmin = as.numeric( length(unique(lineage)) ) - 4
, ymax = as.numeric( ypos_label ) + 1
, xmax = as.numeric( length(unique(lineage)) )
, ymin = as.numeric( (min(ypos_label)-min(ypos_label))) - 0.5
))+
#coord_cartesian(ylim = c(0, ypos_label)) +
facet_wrap(~mutationinformation
, scales = 'free_y')
###########################################
#%% Plot attempt 2
# quick test
tm2 = c("F94L", "A102P", "L4S")
#tm2 = c("F94L")
#########################################################
#================================================
# Plot attempt 2 [with stats]:data wrangling to
# get ypos_label to place stats with geom_label
#================================================
# # small data set
# tm3 = c("F94L", "A102P", "L4S", "L4W")
# tm2 = c("L4W")
#
# # Calculate stats: example
# test2 = plot_df[plot_df$mutationinformation%in%tm2,]
# table(test2$mutationinformation, test2$lineage, test2$sensitivity)
# tm_tab = table(test2$lineage, test2$sensitivity)
# tm_tab
# Calculate stats: example
test2 = plot_df[plot_df$mutationinformation%in%tm2,]
table(test2$mutationinformation, test2$lineage, test2$sensitivity)
tm_tab = table(test2$lineage, test2$sensitivity)
tm_tab
fisher.test(tm_tab)
chisq.test(tm_tab)
#--------------------------------------------
# Plot test: 1 graph with fisher test stats
# precalculated
#-------------------------------------------
ggplot(test2, aes(x = lineage
#, y = snp_frequency
, fill = factor(sensitivity))) +
geom_bar(stat = 'count') +
#geom_bar(stat = "identity")+
facet_wrap(~mutationinformation
, scales = 'free_y') +
#geom_text(aes(label = p.value, x = 0.5, y = 5))
geom_label(aes(label = pval, x = 0.5, ypos_label))
##############################
ggplot(test2, aes(x = lineage
, y = stat(count/sum(count))
, fill = factor(sensitivity))) +
geom_bar(stat = 'count') +
#geom_bar(stat = 'identity') +
facet_wrap(~mutationinformation
, scales = 'free_y') +
# geom_signif(comparisons = list(c("L2", "L3", "L4"))
# , test = "fisher.test"
# , position = 'identity') +
geom_label(aes(label = p.value, vjust = 0))
tm_tab_df = as.data.frame(tm_tab)
tm_tab_df
class(tm_tab_df)
colnames(tm_tab_df) = c("lineage", "sensitivity", "var_count")
tm_tab_df
fisher.test(tm_tab)
ggplot(tm_tab_df, aes(x = lineage
, y = var_count
, fill = sensitivity)) +
geom_bar(stat = "identity") +
geom_signif(comparisons = list(c("L2", "L3", "L4"))
, test = "fisher.test"
#, y = stat(count/sum(count))
)
#geom_signif(data = tm_tab_df, test = "fisher.test", map_signif_level = function(p) sprintf("p = %.2g", p) )
# try
test2 %>%
group_by(mutationinformation) %>%
count(lineage) %>%
#mutate(p_val = pval/1) %>%
#count(sensitivity, pval) %>%
#mutate(Freq = n / sum(n)) %>%
mutate(ypos_label = max(n))
ggplot() +
#aes(lineage, Freq, fill = sensitivity) +
aes(lineage, n, fill = sensitivity) +
geom_bar(stat = "identity") +
#geom_label(aes(label = pval, vjust = 0), x = 0.5, y = 5)
geom_signif(comparisons = list(c("L1", "L2", "L3", "L4"), na.rm = TRUE)
, test = "fisher.test")
# get the X and y coordinates for label
lin_muts_tb = test2 %>%
# Get the ypos for plotting the label for p-value
lin_muts_tb = plot_df %>%
group_by(mutationinformation) %>%
count(lineage) %>%
#mutate(p_val = pval/1) %>%
#count(sensitivity, pval) %>%
#mutate(Freq = n / sum(n)) %>%
mutate(ypos_label = max(n))
head(lin_muts_tb)
class(lin_muts_tb)
head(lin_muts_tb); class(lin_muts_tb)
lin_muts_df = as.data.frame(lin_muts_tb)
class(lin_muts_df)
intersect(names(test2), names(lin_muts_df))
sub_cols = c("mutationinformation", "ypos_label")
lin_muts_df2 = lin_muts_df[, sub_cols]
names(lin_muts_df2)
lin_muts_df2U = lin_muts_df2[!duplicated(lin_muts_df2),]
class(lin_muts_df2); class(test2); class(lin_muts_df2U)
lin_muts_dfM = merge(test2, lin_muts_df2U, by = "mutationinformation", all.y = T)
if nrow(lin_muts_dfM) == nrow(test2)
# now plot
ggplot(lin_muts_dfM, aes(x = lineage
#, y = snp_frequency
, fill = factor(sensitivity))) +
intersect(names(plot_df), names(lin_muts_df))
select_cols = c("mutationinformation", "ypos_label")
lin_muts_df2 = lin_muts_df[, select_cols]
names(lin_muts_df2) ; head(lin_muts_df2)
# remove duplicates before merging
lin_muts_df2U = lin_muts_df2[!duplicated(lin_muts_df2),]
class(lin_muts_df2); class(plot_df); class(lin_muts_df2U)
lin_muts_dfM = merge(plot_df, lin_muts_df2U, by = "mutationinformation", all.y = T)
if (nrow(lin_muts_dfM) == nrow(plot_df) ){
cat("\nPASS: plot_df now has ypos for label"
, "\nGenerating plot_df2 with sensitivity as factor\n")
str(lin_muts_dfM)
lin_muts_dfM$sensitivity = as.factor(lin_muts_dfM$sensitivity)
plot_df2 = lin_muts_dfM
}else{
stop("\nSomething went wrong. ypos_label could not be generated")
}
#================================================
# Plot: with stats (plot_df2)
# TODO:
#1) Add gene name from variable as plot title. <Placeholder provided>
#2) Add: facet_wrap_paginate () to allow graphs to span over multiple pages
#3) Add *: Extend yaxis for each plot to allow geom_label to have space (or see
# if this self resolving with facet_wrap_paginate())
#================================================
p_title = "<Insert gene>"
ggplot(plot_df2, aes(x = lineage
, fill = sensitivity)) +
geom_bar(stat = 'count') +
#geom_bar(stat = "identity")+
facet_wrap(~mutationinformation
, scales = 'free_y') +
theme(legend.position = "top")+
labs(title = p_title) +
#geom_text(aes(label = p.value, x = 0.5, y = 5))
geom_label(aes(label = paste0("p=",pval), x = 2.5, ypos_label+1), fill="white")# +
geom_label(aes(label = paste0("p=",pvalF), x = 2.5, ypos_label+1), fill="white")# +
#geom_text(aes(label = paste0("p=",pvalF), x = 2.5, ypos_label+1))# +
#geom_segment(aes(x = 1, y = ypos_label+0.5, xend = 4, yend = ypos_label+0.5))
#geom_hline(data = lin_muts_dfM, aes(yintercept=ypos_label+0.5))
#geom_bracket(data=lin_muts_dfM, aes(xmin = 1, xmax = 4, y.position = ypos_label+0.5, label=''))