resolving missing mutation info in combining script
This commit is contained in:
parent
d6552628e4
commit
c48c5177ca
3 changed files with 87 additions and 17 deletions
|
@ -54,6 +54,7 @@ os.getcwd()
|
||||||
# FIXME: local imports
|
# FIXME: local imports
|
||||||
#from combining import combine_dfs_with_checks
|
#from combining import combine_dfs_with_checks
|
||||||
from combining_FIXME import detect_common_cols
|
from combining_FIXME import detect_common_cols
|
||||||
|
from reference_dict import oneletter_aa_dict # CHECK DIR STRUC THERE!
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
#%% command line args
|
#%% command line args
|
||||||
arg_parser = argparse.ArgumentParser()
|
arg_parser = argparse.ArgumentParser()
|
||||||
|
@ -155,6 +156,8 @@ ncols_m1 = len(mcsm_foldx_dfs.columns)
|
||||||
|
|
||||||
print('\n\nResult of first merge:', mcsm_foldx_dfs.shape
|
print('\n\nResult of first merge:', mcsm_foldx_dfs.shape
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
mcsm_foldx_dfs[merging_cols_m1].apply(len)
|
||||||
|
mcsm_foldx_dfs[merging_cols_m1].apply(len) == len(mcsm_foldx_dfs)
|
||||||
#%%============================================================================
|
#%%============================================================================
|
||||||
print('==================================='
|
print('==================================='
|
||||||
, '\nSecond merge: dssp + kd'
|
, '\nSecond merge: dssp + kd'
|
||||||
|
@ -183,6 +186,8 @@ ncols_m3 = len(dssp_kd_rd_dfs.columns)
|
||||||
|
|
||||||
print('\n\nResult of Third merge:', dssp_kd_rd_dfs.shape
|
print('\n\nResult of Third merge:', dssp_kd_rd_dfs.shape
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
dssp_kd_rd_dfs[merging_cols_m3].apply(len)
|
||||||
|
dssp_kd_rd_dfs[merging_cols_m3].apply(len) == len(dssp_kd_rd_dfs)
|
||||||
#%%============================================================================
|
#%%============================================================================
|
||||||
print('======================================='
|
print('======================================='
|
||||||
, '\nFourth merge: First merge + Third merge'
|
, '\nFourth merge: First merge + Third merge'
|
||||||
|
@ -203,12 +208,14 @@ else:
|
||||||
|
|
||||||
print('\nResult of Fourth merge:', combined_df.shape
|
print('\nResult of Fourth merge:', combined_df.shape
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
combined_df[merging_cols_m4].apply(len)
|
||||||
|
combined_df[merging_cols_m4].apply(len) == len(combined_df)
|
||||||
#%%============================================================================
|
#%%============================================================================
|
||||||
|
|
||||||
# OR merges: TEDIOUSSSS!!!!
|
# OR merges: TEDIOUSSSS!!!!
|
||||||
|
|
||||||
|
|
||||||
#%%RRRR
|
#%%
|
||||||
print('==================================='
|
print('==================================='
|
||||||
, '\nFifth merge: afor_df + afor_kin_df'
|
, '\nFifth merge: afor_df + afor_kin_df'
|
||||||
, '\n===================================')
|
, '\n===================================')
|
||||||
|
@ -220,8 +227,6 @@ afor_df = pd.read_csv(infile_afor, sep = ',')
|
||||||
afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',')
|
afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',')
|
||||||
afor_kin_df.columns = afor_kin_df.columns.str.lower()
|
afor_kin_df.columns = afor_kin_df.columns.str.lower()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
merging_cols_m5 = detect_common_cols(afor_df, afor_kin_df)
|
merging_cols_m5 = detect_common_cols(afor_df, afor_kin_df)
|
||||||
|
|
||||||
print('Dim of afor_df:', afor_df.shape
|
print('Dim of afor_df:', afor_df.shape
|
||||||
|
@ -244,7 +249,7 @@ common_muts = len(afor_df[afor_df['mutation'].isin(afor_kin_df['mutation'])])
|
||||||
extra_muts_myor = afor_kin_df.shape[0] - common_muts
|
extra_muts_myor = afor_kin_df.shape[0] - common_muts
|
||||||
|
|
||||||
print('=========================================='
|
print('=========================================='
|
||||||
, '\nmy or calcs', extra_muts_myor, 'extra mutation\n'
|
, '\nmy or calcs has', extra_muts_myor, 'extra mutations'
|
||||||
, '\n==========================================')
|
, '\n==========================================')
|
||||||
|
|
||||||
print('Expected cals for merging with outer_join...')
|
print('Expected cals for merging with outer_join...')
|
||||||
|
@ -261,12 +266,13 @@ else:
|
||||||
, '\nCheck expected rows and cols calculation and join type')
|
, '\nCheck expected rows and cols calculation and join type')
|
||||||
|
|
||||||
print('Dim of merged ors_df:', ors_df.shape)
|
print('Dim of merged ors_df:', ors_df.shape)
|
||||||
|
|
||||||
|
ors_df[merging_cols_m5].apply(len)
|
||||||
|
ors_df[merging_cols_m5].apply(len) == len(ors_df)
|
||||||
#%%============================================================================
|
#%%============================================================================
|
||||||
# formatting ors_df
|
# formatting ors_df
|
||||||
|
|
||||||
ors_df.columns
|
ors_df.columns
|
||||||
|
|
||||||
|
|
||||||
# Dropping unncessary columns: already removed in ealier preprocessing
|
# Dropping unncessary columns: already removed in ealier preprocessing
|
||||||
#cols_to_drop = ['reference_allele', 'alternate_allele', 'symbol' ]
|
#cols_to_drop = ['reference_allele', 'alternate_allele', 'symbol' ]
|
||||||
cols_to_drop = ['n_miss']
|
cols_to_drop = ['n_miss']
|
||||||
|
@ -324,7 +330,7 @@ column_order = ['mutation'
|
||||||
#, 'n_miss'
|
#, 'n_miss'
|
||||||
]
|
]
|
||||||
|
|
||||||
if ( (len(column_order) == ors_df.shape[1]) and (DataFrame(column_order).isin(ors_df.columns).all().all()):
|
if ( (len(column_order) == ors_df.shape[1]) and (DataFrame(column_order).isin(ors_df.columns).all().all())):
|
||||||
print('PASS: Column order generated for all:', len(column_order), 'columns'
|
print('PASS: Column order generated for all:', len(column_order), 'columns'
|
||||||
, '\nColumn names match, safe to reorder columns'
|
, '\nColumn names match, safe to reorder columns'
|
||||||
, '\nApplying column order to df...' )
|
, '\nApplying column order to df...' )
|
||||||
|
@ -357,10 +363,35 @@ print('Checking mutations in the two dfs:'
|
||||||
|
|
||||||
#print('\nNo. of common muts:', np.intersect1d(combined_df['mutationinformation'], ors_df_ordered['mutationinformation']) )
|
#print('\nNo. of common muts:', np.intersect1d(combined_df['mutationinformation'], ors_df_ordered['mutationinformation']) )
|
||||||
|
|
||||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
||||||
combined_df_all = pd.merge(combined_df, ors_df, on = merging_cols_m6, how = l_join)
|
combined_df_all = pd.merge(combined_df, ors_df, on = merging_cols_m6, how = l_join)
|
||||||
combined_df_all.shape
|
combined_df_all.shape
|
||||||
|
|
||||||
|
# populate mut_info_f1
|
||||||
|
combined_df_all['mut_info_f1'].isna().sum()
|
||||||
|
combined_df_all['mut_info_f1'] = combined_df_all['position'].astype(str) + combined_df_all['wild_type'] + '>' + combined_df_all['position'].astype(str) + combined_df_all['mutant_type']
|
||||||
|
combined_df_all['mut_info_f1'].isna().sum()
|
||||||
|
|
||||||
|
# populate mut_type
|
||||||
|
combined_df_all['mut_type'].isna().sum()
|
||||||
|
#mut_type_word = combined_df_all['mut_type'].value_counts()
|
||||||
|
mut_type_word = 'missense' # FIXME, should be derived
|
||||||
|
combined_df_all['mut_type'].fillna(mut_type_word, inplace = True)
|
||||||
|
combined_df_all['mut_type'].isna().sum()
|
||||||
|
|
||||||
|
# populate gene_id
|
||||||
|
combined_df_all['gene_id'].isna().sum()
|
||||||
|
#gene_id_word = combined_df_all['gene_id'].value_counts()
|
||||||
|
gene_id_word = 'Rv2043c' # FIXME, should be derived
|
||||||
|
combined_df_all['gene_id'].fillna(gene_id_word, inplace = True)
|
||||||
|
combined_df_all['gene_id'].isna().sum()
|
||||||
|
|
||||||
|
# populate gene_name
|
||||||
|
combined_df_all['gene_name'].isna().sum()
|
||||||
|
combined_df_all['gene_name'].value_counts()
|
||||||
|
combined_df_all['gene_name'].fillna(gene, inplace = True)
|
||||||
|
combined_df_all['gene_name'].isna().sum()
|
||||||
|
|
||||||
|
|
||||||
# FIXME: DIM
|
# FIXME: DIM
|
||||||
# only with left join!
|
# only with left join!
|
||||||
outdf_expected_rows = len(combined_df)
|
outdf_expected_rows = len(combined_df)
|
||||||
|
@ -383,11 +414,52 @@ else:
|
||||||
, '\nmuts in df2 but NOT in df1:'
|
, '\nmuts in df2 but NOT in df1:'
|
||||||
, ors_df['mutationinformation'].isin(combined_df['mutationinformation']).sum())
|
, ors_df['mutationinformation'].isin(combined_df['mutationinformation']).sum())
|
||||||
sys.exit()
|
sys.exit()
|
||||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
||||||
# nan in mutation col
|
|
||||||
# FIXME: should get fixmed with JP's resolved dataset!?
|
#%% IMPORTANT: check if mutation related info is all populated after this merge
|
||||||
combined_df_all['mutation'].isna().sum()
|
# FIXME: should get fixed with JP's resolved dataset!?
|
||||||
|
check_nan = combined_df_all.isna().sum(axis = 0)
|
||||||
|
# relevant mut cols
|
||||||
|
check_mut_cols = merging_cols_m5 + merging_cols_m6
|
||||||
|
|
||||||
|
count_na_mut_cols = combined_df_all[check_mut_cols].isna().sum().reset_index().rename(columns = {'index': 'col_name', 0: 'na_count'})
|
||||||
|
|
||||||
|
if (count_na_mut_cols['na_count'].sum() > 0).any():
|
||||||
|
# FIXME: static override, generate 'mutation' from variable
|
||||||
|
na_muts_n = combined_df_all['mutation'].isna().sum()
|
||||||
baz = combined_df_all[combined_df_all['mutation'].isna()]
|
baz = combined_df_all[combined_df_all['mutation'].isna()]
|
||||||
|
baz = baz[check_mut_cols]
|
||||||
|
print(na_muts_n, 'mutations have missing \'mutation\' info.'
|
||||||
|
, '\nFetching these from reference dict...')
|
||||||
|
|
||||||
|
lookup_dict = dict()
|
||||||
|
for k, v in oneletter_aa_dict.items():
|
||||||
|
lookup_dict[k] = v['three_letter_code_lower']
|
||||||
|
print(lookup_dict)
|
||||||
|
wt_3let = combined_df_all['wild_type'].map(lookup_dict).str.capitalize()
|
||||||
|
#print(wt_3let)
|
||||||
|
pos = combined_df_all['position'].astype(str)
|
||||||
|
#print(pos)
|
||||||
|
mt_3let = combined_df_all['mutant_type'].map(lookup_dict).str.capitalize()
|
||||||
|
#print(mt_3let)
|
||||||
|
baz['mutation'] = 'pnca_p.' + wt_3let + pos + mt_3let
|
||||||
|
print(combined_df_all['mutation'])
|
||||||
|
|
||||||
|
# populate mut_info_f2
|
||||||
|
combined_df_all['mut_info_f2'] = combined_df_all['mutation'].str.replace(gene_match.lower(), 'p.', regex = True)
|
||||||
|
|
||||||
|
#%% merge
|
||||||
|
#merging_cols_m7 = detect_common_cols(combined_df_all, baz)
|
||||||
|
|
||||||
|
baz2 = baz[['mutationinformation', 'mut_info_f2']]
|
||||||
|
baz2 = baz2.drop_duplicates()
|
||||||
|
merging_cols_m7 = detect_common_cols(combined_df_all, baz2)
|
||||||
|
|
||||||
|
combined_df_all2 = pd.merge(combined_df_all, baz2
|
||||||
|
#, on = merging_cols_m7
|
||||||
|
, on = 'mutationinformation'
|
||||||
|
, how = o_join)
|
||||||
|
|
||||||
#%%============================================================================
|
#%%============================================================================
|
||||||
output_cols = combined_df_all.columns
|
output_cols = combined_df_all.columns
|
||||||
print('Output cols:', output_cols)
|
print('Output cols:', output_cols)
|
||||||
|
|
|
@ -45,8 +45,6 @@ Created on Tue Aug 6 12:56:03 2019
|
||||||
#5. chain
|
#5. chain
|
||||||
#6. wild_pos
|
#6. wild_pos
|
||||||
#7. wild_chain_pos
|
#7. wild_chain_pos
|
||||||
|
|
||||||
|
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
#%% load libraries
|
#%% load libraries
|
||||||
import os, sys
|
import os, sys
|
||||||
|
|
|
@ -104,7 +104,7 @@ or_df.columns
|
||||||
|
|
||||||
#%% snp_info file: master and gene specific ones
|
#%% snp_info file: master and gene specific ones
|
||||||
# gene info
|
# gene info
|
||||||
info_df2 = pd.read_csv(gene_info, sep = '\t', header = 0) #447, 10
|
info_df2 = pd.read_csv(gene_info, sep = '\t', header = 0) #447, 11
|
||||||
#info_df2 = pd.read_csv(gene_info, sep = ',', header = 0) #447 10
|
#info_df2 = pd.read_csv(gene_info, sep = ',', header = 0) #447 10
|
||||||
mis_mut_cover = (info_df2['chromosome_number'].nunique()/info_df2['chromosome_number'].count()) * 100
|
mis_mut_cover = (info_df2['chromosome_number'].nunique()/info_df2['chromosome_number'].count()) * 100
|
||||||
print('*****RESULT*****'
|
print('*****RESULT*****'
|
||||||
|
@ -212,7 +212,7 @@ else:
|
||||||
|
|
||||||
#PENDING Jody's reply
|
#PENDING Jody's reply
|
||||||
# !!!!!!!!
|
# !!!!!!!!
|
||||||
# drop nan from dfm2_mis as these are not useful
|
# drop nan from dfm2_mis as these are not useful and JP confirmed the same
|
||||||
print('Dropping NAs before further processing...')
|
print('Dropping NAs before further processing...')
|
||||||
dfm2_mis = dfm2[dfm2['mut_type'].notnull()]
|
dfm2_mis = dfm2[dfm2['mut_type'].notnull()]
|
||||||
# !!!!!!!!
|
# !!!!!!!!
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue