much development
This commit is contained in:
parent
4639688922
commit
c2f9ca62a9
5 changed files with 266 additions and 89 deletions
|
@ -51,7 +51,7 @@ def format_mcsm_na_output(mcsm_na_output_tsv):
|
||||||
print('Assigning meaningful colnames'
|
print('Assigning meaningful colnames'
|
||||||
, '\n=======================================================')
|
, '\n=======================================================')
|
||||||
my_colnames_dict = {'PDB_FILE': 'pdb_file' # relevant info from this col will be extracted and the column discarded
|
my_colnames_dict = {'PDB_FILE': 'pdb_file' # relevant info from this col will be extracted and the column discarded
|
||||||
, 'CHAIN': 'chain' # {wild_type}<position>{mutant_type}
|
, 'CHAIN': 'chain'
|
||||||
, 'WILD_RES': 'wild_type' # one letter amino acid code
|
, 'WILD_RES': 'wild_type' # one letter amino acid code
|
||||||
, 'RES_POS': 'position' # number
|
, 'RES_POS': 'position' # number
|
||||||
, 'MUT_RES': 'mutant_type' # one letter amino acid code
|
, 'MUT_RES': 'mutant_type' # one letter amino acid code
|
||||||
|
@ -65,8 +65,8 @@ def format_mcsm_na_output(mcsm_na_output_tsv):
|
||||||
#############
|
#############
|
||||||
# create mutationinformation column
|
# create mutationinformation column
|
||||||
#############
|
#############
|
||||||
mcsm_na_data['mutationinformation'] = mcsm_na_data['wild_type'] + mcsm_na_data.position.map(str) + mcsm_na_data['mutant_type']
|
#mcsm_na_data['mutationinformation'] = mcsm_na_data['wild_type'] + mcsm_na_data.position.map(str) + mcsm_na_data['mutant_type']
|
||||||
|
mcsm_na_data['mutationinformation'] = mcsm_na_data.loc[:,'wild_type'] + mcsm_na_data.loc[:,'position'].astype(int).apply(str) + mcsm_na_data.loc[:,'mutant_type']
|
||||||
#%%=====================================================================
|
#%%=====================================================================
|
||||||
#############
|
#############
|
||||||
# Create col: mcsm_na_outcome
|
# Create col: mcsm_na_outcome
|
||||||
|
@ -132,4 +132,3 @@ def format_mcsm_na_output(mcsm_na_output_tsv):
|
||||||
, 'pdb_file']]
|
, 'pdb_file']]
|
||||||
return(mcsm_na_dataf)
|
return(mcsm_na_dataf)
|
||||||
#%%#####################################################################
|
#%%#####################################################################
|
||||||
|
|
||||||
|
|
|
@ -34,6 +34,11 @@ Created on Tue Aug 6 12:56:03 2019
|
||||||
# Output: single csv of all 8 dfs combined
|
# Output: single csv of all 8 dfs combined
|
||||||
# useful link
|
# useful link
|
||||||
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
|
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
|
||||||
|
|
||||||
|
#%% FIXME: let the script proceed even if files don't exist!
|
||||||
|
# i.e example below
|
||||||
|
# '/home/tanu/git/Data/ethambutol/output/dynamut_results/embb_complex_dynamut_norm.csv'
|
||||||
|
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
#%% load packages
|
#%% load packages
|
||||||
import sys, os
|
import sys, os
|
||||||
|
@ -48,7 +53,7 @@ homedir = os.path.expanduser('~')
|
||||||
|
|
||||||
# set working dir
|
# set working dir
|
||||||
os.getcwd()
|
os.getcwd()
|
||||||
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
|
#os.chdir(homedir + '/git/LSHTM_analysis/scripts')
|
||||||
os.getcwd()
|
os.getcwd()
|
||||||
|
|
||||||
# FIXME: local imports
|
# FIXME: local imports
|
||||||
|
@ -109,46 +114,80 @@ if not outdir:
|
||||||
#=======
|
#=======
|
||||||
# input
|
# input
|
||||||
#=======
|
#=======
|
||||||
#in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
|
gene_list_normal = ["pnca", "katg", "rpob", "alr"]
|
||||||
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm_SAM.csv' # gidb
|
|
||||||
in_filename_foldx = gene.lower() + '_foldx.csv'
|
if gene.lower() == "gid":
|
||||||
in_filename_deepddg = gene.lower() + '_ni_deepddg.csv' # change to decent filename and put it in the correct dir
|
print("\nReading mCSM file for gene:", gene)
|
||||||
in_filename_dssp = gene.lower() + '_dssp.csv'
|
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm_SAM.csv'
|
||||||
in_filename_kd = gene.lower() + '_kd.csv'
|
if gene.lower() == "embb":
|
||||||
in_filename_rd = gene.lower() + '_rd.csv'
|
print("\nReading mCSM file for gene:", gene)
|
||||||
#in_filename_snpinfo = 'ns' + gene.lower() + '_snp_info_f.csv' # gwas f info
|
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm1.csv'
|
||||||
in_filename_afor = gene.lower() + '_af_or.csv'
|
if gene.lower() in gene_list_normal:
|
||||||
#in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
|
print("\nReading mCSM file for gene:", gene)
|
||||||
infilename_dynamut = gene.lower() + '_complex_dynamut_norm.csv'
|
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
|
||||||
infilename_dynamut2 = gene.lower() + '_complex_dynamut2_norm.csv'
|
|
||||||
infilename_mcsm_na = gene.lower() + '_complex_mcsm_na_norm.csv'
|
|
||||||
infilename_mcsm_f_snps = gene.lower() + '_mcsm_formatted_snps.csv'
|
|
||||||
|
|
||||||
infile_mcsm = outdir + in_filename_mcsm
|
infile_mcsm = outdir + in_filename_mcsm
|
||||||
infile_foldx = outdir + in_filename_foldx
|
|
||||||
infile_deepddg = outdir + in_filename_deepddg
|
|
||||||
infile_dssp = outdir + in_filename_dssp
|
|
||||||
infile_kd = outdir + in_filename_kd
|
|
||||||
infile_rd = outdir + in_filename_rd
|
|
||||||
#infile_snpinfo = outdir + in_filename_snpinfo
|
|
||||||
infile_afor = outdir + in_filename_afor
|
|
||||||
#infile_afor_kin = outdir + in_filename_afor_kin
|
|
||||||
infile_dynamut = outdir + 'dynamut_results/' + infilename_dynamut
|
|
||||||
infile_dynamut2 = outdir + 'dynamut_results/dynamut2/' + infilename_dynamut2
|
|
||||||
infile_mcsm_na = outdir + 'mcsm_na_results/' + infilename_mcsm_na
|
|
||||||
infile_mcsm_f_snps = outdir + infilename_mcsm_f_snps
|
|
||||||
|
|
||||||
# read csv
|
|
||||||
mcsm_df = pd.read_csv(infile_mcsm, sep = ',')
|
mcsm_df = pd.read_csv(infile_mcsm, sep = ',')
|
||||||
|
|
||||||
|
in_filename_foldx = gene.lower() + '_foldx.csv'
|
||||||
|
infile_foldx = outdir + in_filename_foldx
|
||||||
foldx_df = pd.read_csv(infile_foldx , sep = ',')
|
foldx_df = pd.read_csv(infile_foldx , sep = ',')
|
||||||
|
|
||||||
|
in_filename_deepddg = gene.lower() + '_ni_deepddg.csv' # change to decent filename and put it in the correct dir
|
||||||
|
infile_deepddg = outdir + in_filename_deepddg
|
||||||
deepddg_df = pd.read_csv(infile_deepddg, sep = ',')
|
deepddg_df = pd.read_csv(infile_deepddg, sep = ',')
|
||||||
|
|
||||||
|
in_filename_dssp = gene.lower() + '_dssp.csv'
|
||||||
|
infile_dssp = outdir + in_filename_dssp
|
||||||
dssp_df = pd.read_csv(infile_dssp, sep = ',')
|
dssp_df = pd.read_csv(infile_dssp, sep = ',')
|
||||||
|
|
||||||
|
in_filename_kd = gene.lower() + '_kd.csv'
|
||||||
|
infile_kd = outdir + in_filename_kd
|
||||||
kd_df = pd.read_csv(infile_kd, sep = ',')
|
kd_df = pd.read_csv(infile_kd, sep = ',')
|
||||||
|
|
||||||
|
in_filename_rd = gene.lower() + '_rd.csv'
|
||||||
|
infile_rd = outdir + in_filename_rd
|
||||||
rd_df = pd.read_csv(infile_rd, sep = ',')
|
rd_df = pd.read_csv(infile_rd, sep = ',')
|
||||||
|
|
||||||
|
#in_filename_snpinfo = 'ns' + gene.lower() + '_snp_info_f.csv' # gwas f info
|
||||||
|
#infile_snpinfo = outdir + in_filename_snpinfo
|
||||||
|
|
||||||
|
in_filename_afor = gene.lower() + '_af_or.csv'
|
||||||
|
infile_afor = outdir + in_filename_afor
|
||||||
afor_df = pd.read_csv(infile_afor, sep = ',')
|
afor_df = pd.read_csv(infile_afor, sep = ',')
|
||||||
dynamut_df = pd.read_csv(infile_dynamut, sep = ',')
|
|
||||||
|
#in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
|
||||||
|
#infile_afor_kin = outdir + in_filename_afor_kin
|
||||||
|
|
||||||
|
infilename_dynamut2 = gene.lower() + '_dynamut2_norm.csv'
|
||||||
|
infile_dynamut2 = outdir + 'dynamut_results/dynamut2/' + infilename_dynamut2
|
||||||
dynamut2_df = pd.read_csv(infile_dynamut2, sep = ',')
|
dynamut2_df = pd.read_csv(infile_dynamut2, sep = ',')
|
||||||
mcsm_na_df = pd.read_csv(infile_mcsm_na, sep = ',')
|
|
||||||
|
#------------------------------------------------------------
|
||||||
|
# ONLY:for gene pnca and gid: End logic should pick this up!
|
||||||
|
geneL_dy_na = ["pnca", "gid"]
|
||||||
|
#if gene.lower() == "pnca" or "gid" :
|
||||||
|
if gene.lower() in geneL_dy_na :
|
||||||
|
print("\nGene:", gene.lower()
|
||||||
|
, "\nReading Dynamut and mCSM_na files")
|
||||||
|
infilename_dynamut = gene.lower() + '_dynamut_norm.csv' # gid
|
||||||
|
infile_dynamut = outdir + 'dynamut_results/' + infilename_dynamut
|
||||||
|
dynamut_df = pd.read_csv(infile_dynamut, sep = ',')
|
||||||
|
|
||||||
|
infilename_mcsm_na = gene.lower() + '_complex_mcsm_na_norm.csv' # gid
|
||||||
|
infile_mcsm_na = outdir + 'mcsm_na_results/' + infilename_mcsm_na
|
||||||
|
mcsm_na_df = pd.read_csv(infile_mcsm_na, sep = ',')
|
||||||
|
|
||||||
|
# ONLY:for gene embb and alr: End logic should pick this up!
|
||||||
|
geneL_ppi2 = ["embb", "alr"]
|
||||||
|
#if gene.lower() == "embb" or "alr":
|
||||||
|
if gene.lower() in "embb" or "alr":
|
||||||
|
infilename_mcsm_ppi2 = gene.lower() + '_complex_mcsm_ppi2_norm.csv'
|
||||||
|
infile_mcsm_ppi2 = outdir + 'mcsm_ppi2/' + infilename_mcsm_ppi2
|
||||||
|
mcsm_ppi2_df = pd.read_csv(infile_mcsm_ppi2, sep = ',')
|
||||||
|
#--------------------------------------------------------------
|
||||||
|
infilename_mcsm_f_snps = gene.lower() + '_mcsm_formatted_snps.csv'
|
||||||
|
infile_mcsm_f_snps = outdir + infilename_mcsm_f_snps
|
||||||
mcsm_f_snps = pd.read_csv(infile_mcsm_f_snps, sep = ',', names = ['mutationinformation'], header = None)
|
mcsm_f_snps = pd.read_csv(infile_mcsm_f_snps, sep = ',', names = ['mutationinformation'], header = None)
|
||||||
|
|
||||||
#=======
|
#=======
|
||||||
|
@ -158,12 +197,6 @@ out_filename_comb = gene.lower() + '_all_params.csv'
|
||||||
outfile_comb = outdir + out_filename_comb
|
outfile_comb = outdir + out_filename_comb
|
||||||
print('Output filename:', outfile_comb
|
print('Output filename:', outfile_comb
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
|
||||||
o_join = 'outer'
|
|
||||||
l_join = 'left'
|
|
||||||
r_join = 'right'
|
|
||||||
i_join = 'inner'
|
|
||||||
|
|
||||||
# end of variable assignment for input and output files
|
# end of variable assignment for input and output files
|
||||||
#%%############################################################################
|
#%%############################################################################
|
||||||
#=====================
|
#=====================
|
||||||
|
@ -292,6 +325,44 @@ else:
|
||||||
, '\n======================================================')
|
, '\n======================================================')
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
|
#--------------------------
|
||||||
|
# check if >1 chain
|
||||||
|
#--------------------------
|
||||||
|
deepddg_df.loc[:,'chain_id'].value_counts()
|
||||||
|
|
||||||
|
if len(deepddg_df.loc[:,'chain_id'].value_counts()) > 1:
|
||||||
|
print("\nChains detected: >1"
|
||||||
|
, "\nGene:", gene
|
||||||
|
, "\nChains:", deepddg_df.loc[:,'chain_id'].value_counts().index)
|
||||||
|
|
||||||
|
#--------------------------
|
||||||
|
# subset chain
|
||||||
|
#--------------------------
|
||||||
|
if gene.lower() == "embb":
|
||||||
|
sel_chain = "B"
|
||||||
|
else:
|
||||||
|
sel_chain = "A"
|
||||||
|
|
||||||
|
deepddg_df = deepddg_df[deepddg_df['chain_id'] == sel_chain]
|
||||||
|
|
||||||
|
#--------------------------
|
||||||
|
# Check for duplicates
|
||||||
|
#--------------------------
|
||||||
|
if len(deepddg_df['mutationinformation'].duplicated().value_counts())> 1:
|
||||||
|
print("\nFAIL: Duplicates detected in DeepDDG infile"
|
||||||
|
, "\nNo. of duplicates:"
|
||||||
|
, deepddg_df['mutationinformation'].duplicated().value_counts()[1]
|
||||||
|
, "\nformat deepDDG infile before proceeding")
|
||||||
|
sys.exit()
|
||||||
|
else:
|
||||||
|
print("\nPASS: No duplicates detected in DeepDDG infile")
|
||||||
|
|
||||||
|
#--------------------------
|
||||||
|
# Drop chain id col as other targets don't have itCheck for duplicates
|
||||||
|
#--------------------------
|
||||||
|
col_to_drop = ['chain_id']
|
||||||
|
deepddg_df = deepddg_df.drop(col_to_drop, axis = 1)
|
||||||
|
|
||||||
#%%=============================================================================
|
#%%=============================================================================
|
||||||
# Now merges begin
|
# Now merges begin
|
||||||
#%%=============================================================================
|
#%%=============================================================================
|
||||||
|
@ -311,28 +382,83 @@ get_aa_3lower(df = mcsm_df
|
||||||
#mcsm_df.columns = mcsm_df.columns.str.lower()
|
#mcsm_df.columns = mcsm_df.columns.str.lower()
|
||||||
# foldx_df.shape
|
# foldx_df.shape
|
||||||
|
|
||||||
#mcsm_foldx_dfs = combine_dfs_with_checks(mcsm_df, foldx_df, my_join = o_join)
|
#mcsm_foldx_dfs = combine_dfs_with_checks(mcsm_df, foldx_df, my_join = "outer")
|
||||||
merging_cols_m1 = detect_common_cols(mcsm_df, foldx_df)
|
merging_cols_m1 = detect_common_cols(mcsm_df, foldx_df)
|
||||||
mcsm_foldx_dfs = pd.merge(mcsm_df, foldx_df, on = merging_cols_m1, how = o_join)
|
mcsm_foldx_dfs = pd.merge(mcsm_df
|
||||||
|
, foldx_df
|
||||||
|
, on = merging_cols_m1
|
||||||
|
, how = "outer")
|
||||||
ncols_m1 = len(mcsm_foldx_dfs.columns)
|
ncols_m1 = len(mcsm_foldx_dfs.columns)
|
||||||
|
|
||||||
print('\n\nResult of first merge:', mcsm_foldx_dfs.shape
|
print('\n\nResult of first merge:', mcsm_foldx_dfs.shape
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
mcsm_foldx_dfs[merging_cols_m1].apply(len)
|
mcsm_foldx_dfs[merging_cols_m1].apply(len)
|
||||||
mcsm_foldx_dfs[merging_cols_m1].apply(len) == len(mcsm_foldx_dfs)
|
mcsm_foldx_dfs[merging_cols_m1].apply(len) == len(mcsm_foldx_dfs)
|
||||||
|
|
||||||
|
#%% for embB and any other targets where mCSM-lig hasn't run for
|
||||||
|
# get the empty cells to be full of meaningful info
|
||||||
|
if mcsm_foldx_dfs.loc[:,'wild_type': 'mut_aa_3lower'].isnull().values.any():
|
||||||
|
print ("NAs detected in mcsm cols after merge")
|
||||||
|
|
||||||
|
##############################
|
||||||
|
# Extract relevant col values
|
||||||
|
# code to one
|
||||||
|
##############################
|
||||||
|
|
||||||
|
# wt_reg = r'(^[A-Z]{1})'
|
||||||
|
# print('wild_type:', wt_reg)
|
||||||
|
|
||||||
|
# mut_reg = r'[0-9]+(\w{1})$'
|
||||||
|
# print('mut type:', mut_reg)
|
||||||
|
mcsm_foldx_dfs['wild_type'] = mcsm_foldx_dfs.loc[:,'mutationinformation'].str.extract(r'(^[A-Z]{1})')
|
||||||
|
mcsm_foldx_dfs['position'] = mcsm_foldx_dfs.loc[:,'mutationinformation'].str.extract(r'([0-9]+)')
|
||||||
|
mcsm_foldx_dfs['mutant_type'] = mcsm_foldx_dfs.loc[:,'mutationinformation'].str.extract(r'[0-9]+([A-Z]{1})$')
|
||||||
|
|
||||||
|
# BEWARE: Bit of logic trap i.e if nan comes first
|
||||||
|
# in chain column, then nan will be populated!
|
||||||
|
#df['foo'] = df['chain'].unique()[0]
|
||||||
|
mcsm_foldx_dfs['chain'] = np.where(mcsm_foldx_dfs[['chain']].isnull().all(axis=1)
|
||||||
|
, mcsm_foldx_dfs['chain'].unique()[0]
|
||||||
|
, mcsm_foldx_dfs['chain'])
|
||||||
|
|
||||||
|
mcsm_foldx_dfs['ligand_id'] = np.where(mcsm_foldx_dfs[['ligand_id']].isnull().all(axis=1)
|
||||||
|
, mcsm_foldx_dfs['ligand_id'].unique()[0]
|
||||||
|
, mcsm_foldx_dfs['ligand_id'])
|
||||||
|
#--------------------------------------------------------------------------
|
||||||
|
|
||||||
|
mcsm_foldx_dfs['wild_pos'] = mcsm_foldx_dfs.loc[:,'wild_type'] + mcsm_foldx_dfs.loc[:,'position'].astype(int).apply(str)
|
||||||
|
mcsm_foldx_dfs['wild_chain_pos'] = mcsm_foldx_dfs.loc[:,'wild_type'] + mcsm_foldx_dfs.loc[:,'chain'] + mcsm_foldx_dfs.loc[:,'position'].astype(int).apply(str)
|
||||||
|
|
||||||
|
#############
|
||||||
|
# Map 1 letter
|
||||||
|
# code to 3Upper
|
||||||
|
#############
|
||||||
|
# initialise a sub dict that is lookup dict for
|
||||||
|
# 3-LETTER aa code to 1-LETTER aa code
|
||||||
|
lookup_dict = dict()
|
||||||
|
for k, v in oneletter_aa_dict.items():
|
||||||
|
lookup_dict[k] = v['three_letter_code_lower']
|
||||||
|
wt = mcsm_foldx_dfs['wild_type'].squeeze() # converts to a series that map works on
|
||||||
|
mcsm_foldx_dfs['wt_aa_3lower'] = wt.map(lookup_dict)
|
||||||
|
mut = mcsm_foldx_dfs['mutant_type'].squeeze()
|
||||||
|
mcsm_foldx_dfs['mut_aa_3lower'] = mut.map(lookup_dict)
|
||||||
|
|
||||||
#%%
|
#%%
|
||||||
print('==================================='
|
print('==================================='
|
||||||
, '\nSecond merge: mcsm_foldx_dfs + deepddg'
|
, '\nSecond merge: mcsm_foldx_dfs + deepddg'
|
||||||
, '\n===================================')
|
, '\n===================================')
|
||||||
|
|
||||||
#deepddg_df = pd.read_csv(infile_deepddg, sep = ',')
|
|
||||||
#deepddg_df.columns
|
|
||||||
|
|
||||||
# merge with mcsm_foldx_dfs and deepddg_df
|
# merge with mcsm_foldx_dfs and deepddg_df
|
||||||
mcsm_foldx_deepddg_dfs = pd.merge(mcsm_foldx_dfs, deepddg_df, on = 'mutationinformation', how = l_join)
|
mcsm_foldx_deepddg_dfs = pd.merge(mcsm_foldx_dfs
|
||||||
|
, deepddg_df
|
||||||
|
, on = 'mutationinformation'
|
||||||
|
, how = "left")
|
||||||
mcsm_foldx_deepddg_dfs['deepddg_outcome'].value_counts()
|
mcsm_foldx_deepddg_dfs['deepddg_outcome'].value_counts()
|
||||||
|
|
||||||
ncols_deepddg_merge = len(mcsm_foldx_deepddg_dfs.columns)
|
ncols_deepddg_merge = len(mcsm_foldx_deepddg_dfs.columns)
|
||||||
|
|
||||||
|
mcsm_foldx_deepddg_dfs['position'] = mcsm_foldx_deepddg_dfs['position'].astype('int64')
|
||||||
|
|
||||||
#%%============================================================================
|
#%%============================================================================
|
||||||
print('==================================='
|
print('==================================='
|
||||||
, '\Third merge: dssp + kd'
|
, '\Third merge: dssp + kd'
|
||||||
|
@ -342,9 +468,12 @@ dssp_df.shape
|
||||||
kd_df.shape
|
kd_df.shape
|
||||||
rd_df.shape
|
rd_df.shape
|
||||||
|
|
||||||
#dssp_kd_dfs = combine_dfs_with_checks(dssp_df, kd_df, my_join = o_join)
|
#dssp_kd_dfs = combine_dfs_with_checks(dssp_df, kd_df, my_join = "outer")
|
||||||
merging_cols_m2 = detect_common_cols(dssp_df, kd_df)
|
merging_cols_m2 = detect_common_cols(dssp_df, kd_df)
|
||||||
dssp_kd_dfs = pd.merge(dssp_df, kd_df, on = merging_cols_m2, how = o_join)
|
dssp_kd_dfs = pd.merge(dssp_df
|
||||||
|
, kd_df
|
||||||
|
, on = merging_cols_m2
|
||||||
|
, how = "outer")
|
||||||
|
|
||||||
print('\n\nResult of third merge:', dssp_kd_dfs.shape
|
print('\n\nResult of third merge:', dssp_kd_dfs.shape
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
@ -353,10 +482,12 @@ print('==================================='
|
||||||
, '\nFourth merge: third merge + rd_df'
|
, '\nFourth merge: third merge + rd_df'
|
||||||
, '\ndssp_kd_dfs + rd_df'
|
, '\ndssp_kd_dfs + rd_df'
|
||||||
, '\n===================================')
|
, '\n===================================')
|
||||||
#dssp_kd_rd_dfs = combine_dfs_with_checks(dssp_kd_dfs, rd_df, my_join = o_join)
|
#dssp_kd_rd_dfs = combine_dfs_with_checks(dssp_kd_dfs, rd_df, my_join = "outer")
|
||||||
merging_cols_m3 = detect_common_cols(dssp_kd_dfs, rd_df)
|
merging_cols_m3 = detect_common_cols(dssp_kd_dfs, rd_df)
|
||||||
dssp_kd_rd_dfs = pd.merge(dssp_kd_dfs, rd_df, on = merging_cols_m3
|
dssp_kd_rd_dfs = pd.merge(dssp_kd_dfs
|
||||||
, how = o_join)
|
, rd_df
|
||||||
|
, on = merging_cols_m3
|
||||||
|
, how = "outer")
|
||||||
|
|
||||||
ncols_m3 = len(dssp_kd_rd_dfs.columns)
|
ncols_m3 = len(dssp_kd_rd_dfs.columns)
|
||||||
|
|
||||||
|
@ -369,23 +500,40 @@ print('======================================='
|
||||||
, '\nFifth merge: Second merge + fourth merge'
|
, '\nFifth merge: Second merge + fourth merge'
|
||||||
, '\nmcsm_foldx_dfs + dssp_kd_rd_dfs'
|
, '\nmcsm_foldx_dfs + dssp_kd_rd_dfs'
|
||||||
, '\n=======================================')
|
, '\n=======================================')
|
||||||
#combined_df = combine_dfs_with_checks(mcsm_foldx_dfs, dssp_kd_rd_dfs, my_join = i_join)
|
|
||||||
|
#combined_df = combine_dfs_with_checks(mcsm_foldx_dfs, dssp_kd_rd_dfs, my_join = "inner")
|
||||||
#merging_cols_m4 = detect_common_cols(mcsm_foldx_dfs, dssp_kd_rd_dfs)
|
#merging_cols_m4 = detect_common_cols(mcsm_foldx_dfs, dssp_kd_rd_dfs)
|
||||||
#combined_df = pd.merge(mcsm_foldx_dfs, dssp_kd_rd_dfs, on = merging_cols_m4, how = i_join)
|
#combined_df = pd.merge(mcsm_foldx_dfs, dssp_kd_rd_dfs, on = merging_cols_m4, how = "inner")
|
||||||
#combined_df_expected_cols = ncols_m1 + ncols_m3 - len(merging_cols_m4)
|
#combined_df_expected_cols = ncols_m1 + ncols_m3 - len(merging_cols_m4)
|
||||||
|
|
||||||
# with deepddg values
|
# with deepddg values
|
||||||
merging_cols_m4 = detect_common_cols(mcsm_foldx_deepddg_dfs, dssp_kd_rd_dfs)
|
merging_cols_m4 = detect_common_cols(mcsm_foldx_deepddg_dfs, dssp_kd_rd_dfs)
|
||||||
combined_df = pd.merge(mcsm_foldx_deepddg_dfs, dssp_kd_rd_dfs, on = merging_cols_m4, how = i_join)
|
combined_df = pd.merge(mcsm_foldx_deepddg_dfs
|
||||||
|
, dssp_kd_rd_dfs
|
||||||
|
, on = merging_cols_m4
|
||||||
|
, how = "inner")
|
||||||
|
|
||||||
combined_df_expected_cols = ncols_deepddg_merge + ncols_m3 - len(merging_cols_m4)
|
combined_df_expected_cols = ncols_deepddg_merge + ncols_m3 - len(merging_cols_m4)
|
||||||
|
|
||||||
if len(combined_df) == len(mcsm_df) and len(combined_df.columns) == combined_df_expected_cols:
|
# FIXME: check logic, doesn't effect anything else!
|
||||||
|
if not gene == "embB":
|
||||||
|
print("\nGene is:", gene)
|
||||||
|
if len(combined_df) == len(mcsm_df) and len(combined_df.columns) == combined_df_expected_cols:
|
||||||
print('PASS: successfully combined 5 dfs'
|
print('PASS: successfully combined 5 dfs'
|
||||||
, '\nNo. of rows combined_df:', len(combined_df)
|
, '\nNo. of rows combined_df:', len(combined_df)
|
||||||
, '\nNo. of cols combined_df:', len(combined_df.columns))
|
, '\nNo. of cols combined_df:', len(combined_df.columns))
|
||||||
else:
|
else:
|
||||||
sys.exit('FAIL: check individual df merges')
|
#sys.exit('FAIL: check individual df merges')
|
||||||
|
print("\nGene is:", gene
|
||||||
|
, "\ncombined_df length:", len(combined_df)
|
||||||
|
, "\nmcsm_df_length:", len(mcsm_df)
|
||||||
|
)
|
||||||
|
if len(combined_df.columns) == combined_df_expected_cols:
|
||||||
|
print('PASS: successfully combined 5 dfs'
|
||||||
|
, '\nNo. of rows combined_df:', len(combined_df)
|
||||||
|
, '\nNo. of cols combined_df:', len(combined_df.columns))
|
||||||
|
else:
|
||||||
|
sys.exit('FAIL: check individual merges')
|
||||||
|
|
||||||
print('\nResult of Fourth merge:', combined_df.shape
|
print('\nResult of Fourth merge:', combined_df.shape
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
@ -401,7 +549,7 @@ combined_df['chain'].equals(combined_df['chain_id'])
|
||||||
combined_df['wild_type'].equals(combined_df['wild_type_kd']) # has nan
|
combined_df['wild_type'].equals(combined_df['wild_type_kd']) # has nan
|
||||||
combined_df['wild_type'].equals(combined_df['wild_type_dssp'])
|
combined_df['wild_type'].equals(combined_df['wild_type_dssp'])
|
||||||
|
|
||||||
#sanity check
|
# sanity check
|
||||||
foo = combined_df[['wild_type', 'wild_type_kd', 'wt_3letter_caps', 'wt_aa_3lower', 'mut_aa_3lower']]
|
foo = combined_df[['wild_type', 'wild_type_kd', 'wt_3letter_caps', 'wt_aa_3lower', 'mut_aa_3lower']]
|
||||||
|
|
||||||
# Drop cols
|
# Drop cols
|
||||||
|
@ -455,7 +603,11 @@ afor_df = afor_df.drop(['position'], axis = 1)
|
||||||
afor_cols = afor_df.columns
|
afor_cols = afor_df.columns
|
||||||
|
|
||||||
# merge
|
# merge
|
||||||
combined_stab_afor = pd.merge(combined_df_clean, afor_df, on = merging_cols_m5, how = l_join)
|
combined_stab_afor = pd.merge(combined_df_clean
|
||||||
|
, afor_df
|
||||||
|
, on = merging_cols_m5
|
||||||
|
, how = "left")
|
||||||
|
|
||||||
comb_afor_df_cols = combined_stab_afor.columns
|
comb_afor_df_cols = combined_stab_afor.columns
|
||||||
|
|
||||||
comb_afor_expected_cols = len(combined_df_clean.columns) + len(afor_df.columns) - len(merging_cols_m5)
|
comb_afor_expected_cols = len(combined_df_clean.columns) + len(afor_df.columns) - len(merging_cols_m5)
|
||||||
|
@ -467,15 +619,23 @@ if len(combined_stab_afor) == len(combined_df_clean) and len(combined_stab_afor.
|
||||||
else:
|
else:
|
||||||
sys.exit('\nFAIL: check individual df merges')
|
sys.exit('\nFAIL: check individual df merges')
|
||||||
|
|
||||||
print('\n\nResult of Fourth merge:', combined_stab_afor.shape
|
print('\n\nResult of Fifth merge:', combined_stab_afor.shape
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
|
||||||
combined_stab_afor[merging_cols_m5].apply(len)
|
combined_stab_afor[merging_cols_m5].apply(len)
|
||||||
combined_stab_afor[merging_cols_m5].apply(len) == len(combined_stab_afor)
|
combined_stab_afor[merging_cols_m5].apply(len) == len(combined_stab_afor)
|
||||||
|
|
||||||
if len(combined_stab_afor) - combined_stab_afor['mutation'].isna().sum() == len(afor_df):
|
if (len(combined_stab_afor) - combined_stab_afor['mutation'].isna().sum()) == len(afor_df):
|
||||||
print('\nPASS: Merge successful for af and or'
|
print('\nPASS: Merge successful for af and or with matched numbers')
|
||||||
, '\nNo. of nsSNPs with valid ORs: ', len(afor_df))
|
|
||||||
|
if len(combined_stab_afor) - combined_stab_afor['mutation'].isna().sum() == len(afor_df)-len(afor_df[~afor_df['mutation'].isin(combined_stab_afor['mutation'])]):
|
||||||
|
print("\nMismatched numbers, OR df has extra snps not found in mcsm df"
|
||||||
|
, "\nNo. of nsSNPs with valid ORs:", len(afor_df)
|
||||||
|
, "\nNo. of mcsm nsSNPs: ", len(combined_df_clean)
|
||||||
|
, "\nNo. of OR nsSNPs not in mCSM df:"
|
||||||
|
, len(afor_df[~afor_df['mutation'].isin(combined_stab_afor['mutation'])])
|
||||||
|
, "\nWriting these mutations to file:")
|
||||||
|
orsnps_notmcsm = afor_df[~afor_df['mutation'].isin(combined_stab_afor['mutation'])]
|
||||||
else:
|
else:
|
||||||
sys.exit('\nFAIL: merge unsuccessful for af and or')
|
sys.exit('\nFAIL: merge unsuccessful for af and or')
|
||||||
|
|
||||||
|
@ -486,7 +646,7 @@ outfile_comb_afor = outdir + '/' + out_filename_comb_afor
|
||||||
print('Output filename:', outfile_comb_afor
|
print('Output filename:', outfile_comb_afor
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
|
||||||
# # write csv
|
# write csv
|
||||||
print('Writing file: combined stability and afor')
|
print('Writing file: combined stability and afor')
|
||||||
combined_stab_afor.to_csv(outfile_comb_afor, index = False)
|
combined_stab_afor.to_csv(outfile_comb_afor, index = False)
|
||||||
print('\nFinished writing file:'
|
print('\nFinished writing file:'
|
||||||
|
@ -494,7 +654,20 @@ print('\nFinished writing file:'
|
||||||
, '\nNo. of cols:', combined_stab_afor.shape[1])
|
, '\nNo. of cols:', combined_stab_afor.shape[1])
|
||||||
#%%============================================================================
|
#%%============================================================================
|
||||||
# combine dynamut, dynamut2, and mcsm_na
|
# combine dynamut, dynamut2, and mcsm_na
|
||||||
dfs_list = [dynamut_df, dynamut2_df, mcsm_na_df]
|
#dfs_list = [dynamut_df, dynamut2_df, mcsm_na_df] # gid
|
||||||
|
|
||||||
|
if gene.lower() == "pnca":
|
||||||
|
dfs_list = [dynamut_df, dynamut2_df]
|
||||||
|
if gene.lower() == "gid":
|
||||||
|
dfs_list = [dynamut_df, dynamut2_df, mcsm_na_df]
|
||||||
|
if gene.lower() == "embb":
|
||||||
|
dfs_list = [dynamut2_df, mcsm_ppi2_df]
|
||||||
|
if gene.lower() == "katg":
|
||||||
|
dfs_list = [dynamut2_df]
|
||||||
|
if gene.lower() == "rpob":
|
||||||
|
dfs_list = [dynamut2_df]
|
||||||
|
if gene.lower() == "alr":
|
||||||
|
dfs_list = [dynamut2_df, mcsm_ppi2_df]
|
||||||
|
|
||||||
dfs_merged = reduce(lambda left,right: pd.merge(left
|
dfs_merged = reduce(lambda left,right: pd.merge(left
|
||||||
, right
|
, right
|
||||||
|
@ -514,7 +687,7 @@ len(combined_stab_afor.columns)
|
||||||
combined_all_params = pd.merge(combined_stab_afor
|
combined_all_params = pd.merge(combined_stab_afor
|
||||||
, dfs_merged_clean
|
, dfs_merged_clean
|
||||||
, on = merging_cols_m6
|
, on = merging_cols_m6
|
||||||
, how = i_join)
|
, how = "inner")
|
||||||
|
|
||||||
expected_ncols = len(dfs_merged_clean.columns) + len(combined_stab_afor.columns) - len(merging_cols_m6)
|
expected_ncols = len(dfs_merged_clean.columns) + len(combined_stab_afor.columns) - len(merging_cols_m6)
|
||||||
expected_nrows = len(combined_stab_afor)
|
expected_nrows = len(combined_stab_afor)
|
||||||
|
|
|
@ -70,7 +70,6 @@ arg_parser.add_argument('-m', '--make_dirs', help = 'Make dir for input and outp
|
||||||
|
|
||||||
arg_parser.add_argument('--debug', action ='store_true', help = 'Debug Mode')
|
arg_parser.add_argument('--debug', action ='store_true', help = 'Debug Mode')
|
||||||
|
|
||||||
|
|
||||||
args = arg_parser.parse_args()
|
args = arg_parser.parse_args()
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
#%% variable assignment: input and output paths & filenames
|
#%% variable assignment: input and output paths & filenames
|
||||||
|
|
|
@ -117,12 +117,20 @@ deepddg_df['deepddg_outcome'].value_counts()
|
||||||
len(deepddg_df.loc[deepddg_df['deepddg'] < 0])
|
len(deepddg_df.loc[deepddg_df['deepddg'] < 0])
|
||||||
len(deepddg_df.loc[deepddg_df['deepddg'] >= 0])
|
len(deepddg_df.loc[deepddg_df['deepddg'] >= 0])
|
||||||
|
|
||||||
|
#----------------------------------------------
|
||||||
# drop extra columns to allow clean merging
|
# drop extra columns to allow clean merging
|
||||||
deepddg_short_df = deepddg_df.drop(['chain_id', 'wild_type_deepddg', 'position', 'mutant_type_deepddg'], axis = 1)
|
#----------------------------------------------
|
||||||
|
#deepddg_short_df = deepddg_df.drop(['chain_id', 'wild_type_deepddg', 'position', 'mutant_type_deepddg'], axis = 1)
|
||||||
|
|
||||||
|
#----------------------------------------------
|
||||||
|
# embb (where gene-target has > 1 chain)
|
||||||
|
# include chain else the numbering will be messed up!
|
||||||
|
#----------------------------------------------
|
||||||
|
deepddg_short_df = deepddg_df.drop(['wild_type_deepddg', 'position', 'mutant_type_deepddg'], axis = 1)
|
||||||
|
|
||||||
# rearrange columns
|
# rearrange columns
|
||||||
deepddg_short_df.columns
|
deepddg_short_df.columns
|
||||||
deepddg_short_df = deepddg_short_df[["mutationinformation", "deepddg", "deepddg_outcome"]]
|
deepddg_short_df = deepddg_short_df[["chain_id", "mutationinformation", "deepddg", "deepddg_outcome"]]
|
||||||
|
|
||||||
#%% combine with mcsm snps
|
#%% combine with mcsm snps
|
||||||
deepddg_mcsm_muts_dfs = pd.merge(deepddg_short_df
|
deepddg_mcsm_muts_dfs = pd.merge(deepddg_short_df
|
||||||
|
|
|
@ -45,8 +45,6 @@ arg_parser.add_argument('--debug', action='store_true', help = 'Debug Mode')
|
||||||
args = arg_parser.parse_args()
|
args = arg_parser.parse_args()
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
#%% variable assignment: input and output
|
#%% variable assignment: input and output
|
||||||
#drug = 'pyrazinamide'
|
|
||||||
#gene = 'pncA'
|
|
||||||
drug = args.drug
|
drug = args.drug
|
||||||
gene = args.gene
|
gene = args.gene
|
||||||
gene_match = gene + '_p.'
|
gene_match = gene + '_p.'
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue