added rpob ks test script

This commit is contained in:
Tanushree Tunstall 2022-08-31 22:03:39 +01:00
parent bc9d1a7149
commit c2b46286d8

View file

@ -0,0 +1,545 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: KS test for PS/DUET lineage distributions
#=======================================================================
#!/usr/bin/env Rscript
#source("~/git/LSHTM_analysis/config/rpob.R")
# get plottting dfs
#source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
#=============
# Output
#=============
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
outdir_stats = paste0(outdir_images,"stats/")
# ks test by lineage
#ks_lineage = paste0(outdir, "/KS_lineage_all_muts.csv")
###########################
# Data for stats
# you need df2 or df2_comp
# since this is one-many relationship
###########################
# REASSIGNMENT
df2 = merged_df2[, colnames(merged_df2)%in%plotting_cols]
# quick checks
colnames(df2)
str(df2)
########################################################################
table(df2$lineage); str(df2$lineage)
# subset only lineages1-4
sel_lineages = c("L1"
, "L2"
, "L3"
, "L4")
# subset selected lineages
df_lin = subset(df2, subset = lineage %in% sel_lineages)
table(df_lin$lineage)
table(df_lin$sensitivity)
table(df_lin$lineage, df_lin$sensitivity)
#ensure lineage is a factor
#str(df_lin$lineage); str(df_lin$lineage_labels)
#df_lin$lineage = as.factor(df_lin$lineage)
#df_lin$lineage_labels = as.factor(df_lin$lineage)
table(df_lin$lineage); table(df_lin$lineage_labels)
#==============================
# Stats for average stability
#=============================
# individual: CHECKS
lin1 = df_lin[df_lin$lineage == "L1",]$avg_stability_scaled
lin2 = df_lin[df_lin$lineage == "L2",]$avg_stability_scaled
lin3 = df_lin[df_lin$lineage == "L3",]$avg_stability_scaled
lin4 = df_lin[df_lin$lineage == "L4",]$avg_stability_scaled
ks.test(lin1, lin4)
ks.test(df_lin$avg_stability_scaled[df_lin$lineage == "L1"]
, df_lin$avg_stability_scaled[df_lin$lineage == "L4"])
#=======================================================================
my_lineages = levels(factor(df_lin$lineage)); my_lineages
#=======================================================================
# Loop
#0 : < 2.2e-16
#=====================
# Lineage 1 comparisons
#=====================
my_lin1 = "L1"
#my_lineages_comp_l1 = c("L2", "L3", "L4")
my_lineages_comp_l1 = my_lineages[-match(my_lin1, my_lineages)]
ks_df_l1 = data.frame()
for (i in my_lineages_comp_l1){
cat(i)
l1_df = data.frame(comparison = NA, method = NA, ks_statistic = NA, ks_pvalue = NA
, n_samples = NA
, n_samples_total = NA)
lineage_comp = paste0(my_lin1, " vs ", i)
n_samples_lin = nrow(df_lin[df_lin$lineage == my_lin1,])
n_samples_i = nrow(df_lin[df_lin$lineage == i,])
n_samples_all = paste0(my_lin1, "(", n_samples_lin, ")"
, ", "
, i, "(", n_samples_i, ")")
n_samples_total = n_samples_lin + n_samples_i
ks_method = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin1]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$method
ks_statistic = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin1]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$statistic
ks_pvalue = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin1]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$p.value
# print(c(lineage_comp, ks_method, ks_statistic[[1]], ks_pval))
l1_df$comparison = lineage_comp
l1_df$method = ks_method
l1_df$ks_statistic = ks_statistic[[1]]
l1_df$ks_pvalue = ks_pvalue
l1_df$n_samples = n_samples_all
l1_df$n_samples_total= n_samples_total
print(l1_df)
ks_df_l1 = rbind(ks_df_l1,l1_df)
}
ks_df_l1
# adjusted p-value: bonferroni
ks_df_l1$p_adj_bonferroni = p.adjust(ks_df_l1$ks_pvalue, method = "bonferroni")
ks_df_l1$signif_bon = ks_df_l1$p_adj_bonferroni
ks_df_l1 = dplyr::mutate(ks_df_l1
, signif_bon = case_when(signif_bon == 0.05 ~ "."
, signif_bon <=0.0001 ~ '****'
, signif_bon <=0.001 ~ '***'
, signif_bon <=0.01 ~ '**'
, signif_bon <0.05 ~ '*'
, TRUE ~ 'ns'))
# adjusted p-value:fdr
ks_df_l1$p_adj_fdr = p.adjust(ks_df_l1$ks_pvalue, method = "fdr")
ks_df_l1$signif_fdr = ks_df_l1$p_adj_fdr
ks_df_l1 = dplyr::mutate(ks_df_l1
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
, signif_fdr <=0.0001 ~ '****'
, signif_fdr <=0.001 ~ '***'
, signif_fdr <=0.01 ~ '**'
, signif_fdr <0.05 ~ '*'
, TRUE ~ 'ns'))
ks_df_l1
#####################################################################
#=====================
# Lineage 2 comparisons
#=====================
my_lin2 = "L2"
#my_lineages_comp_l2 = c("L1", lineage3", "L4")
my_lineages_comp_l2 = my_lineages[-match(my_lin2, my_lineages)]
ks_df_l2 = data.frame()
for (i in my_lineages_comp_l2){
cat(i)
l2_df = data.frame(comparison = NA, method = NA, ks_statistic = NA, ks_pvalue = NA
, n_samples = NA
, n_samples_total = NA)
lineage_comp = paste0(my_lin2, " vs ", i)
n_samples_lin = nrow(df_lin[df_lin$lineage == my_lin2,])
n_samples_i = nrow(df_lin[df_lin$lineage == i,])
n_samples_all = paste0(my_lin2, "(", n_samples_lin, ")"
, ", "
, i, "(", n_samples_i, ")")
n_samples_total = n_samples_lin + n_samples_i
ks_method = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin2]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$method
ks_statistic = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin2]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$statistic
ks_pvalue = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin2]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$p.value
# print(c(lineage_comp, ks_method, ks_statistic[[1]], ks_pval))
l2_df$comparison = lineage_comp
l2_df$method = ks_method
l2_df$ks_statistic = ks_statistic[[1]]
l2_df$ks_pvalue = ks_pvalue
l2_df$n_samples = n_samples_all
l2_df$n_samples_total = n_samples_total
print(l2_df)
ks_df_l2 = rbind(ks_df_l2, l2_df)
}
# adjusted p-value: bonferroni
ks_df_l2$p_adj_bonferroni = p.adjust(ks_df_l2$ks_pvalue, method = "bonferroni")
ks_df_l2$signif_bon = ks_df_l2$p_adj_bonferroni
ks_df_l2 = dplyr::mutate(ks_df_l2
, signif_bon = case_when(signif_bon == 0.05 ~ "."
, signif_bon <=0.0001 ~ '****'
, signif_bon <=0.001 ~ '***'
, signif_bon <=0.01 ~ '**'
, signif_bon <0.05 ~ '*'
, TRUE ~ 'ns'))
# adjusted p-value:fdr
ks_df_l2$p_adj_fdr = p.adjust(ks_df_l2$ks_pvalue, method = "fdr")
ks_df_l2$signif_fdr = ks_df_l2$p_adj_fdr
ks_df_l2 = dplyr::mutate(ks_df_l2
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
, signif_fdr <=0.0001 ~ '****'
, signif_fdr <=0.001 ~ '***'
, signif_fdr <=0.01 ~ '**'
, signif_fdr <0.05 ~ '*'
, TRUE ~ 'ns'))
ks_df_l2
#=====================
# Lineage 3 comparisons
#=====================
my_lin3 = "L3"
#my_lineages_comp_l3 = c("L1", lineage2", "L4")
my_lineages_comp_l3 = my_lineages[-match(my_lin3, my_lineages)]
ks_df_l3 = data.frame()
for (i in my_lineages_comp_l3){
cat(i)
l3_df = data.frame(comparison = NA, method = NA, ks_statistic = NA, ks_pvalue = NA
, n_samples = NA
, n_samples_total = NA)
lineage_comp = paste0(my_lin3, " vs ", i)
n_samples_lin = nrow(df_lin[df_lin$lineage == my_lin3,])
n_samples_i = nrow(df_lin[df_lin$lineage == i,])
n_samples_all = paste0(my_lin3, "(", n_samples_lin, ")"
, ", "
, i, "(", n_samples_i, ")")
n_samples_total = n_samples_lin + n_samples_i
ks_method = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin3]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$method
ks_statistic = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin3]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$statistic
ks_pvalue = ks.test(df_lin$avg_stability_scaled[df_lin$lineage == my_lin3]
, df_lin$avg_stability_scaled[df_lin$lineage == i])$p.value
# print(c(lineage_comp, ks_method, ks_statistic[[1]], ks_pval))
l3_df$comparison = lineage_comp
l3_df$method = ks_method
l3_df$ks_statistic = ks_statistic[[1]]
l3_df$ks_pvalue = ks_pvalue
l3_df$n_samples = n_samples_all
l3_df$n_samples_total = n_samples_total
print(l3_df)
ks_df_l3 = rbind(ks_df_l3, l3_df)
}
# adjusted p-value: bonferroni
ks_df_l3$p_adj_bonferroni = p.adjust(ks_df_l3$ks_pvalue, method = "bonferroni")
ks_df_l3$signif_bon = ks_df_l3$p_adj_bonferroni
ks_df_l3 = dplyr::mutate(ks_df_l3
, signif_bon = case_when(signif_bon == 0.05 ~ "."
, signif_bon <=0.0001 ~ '****'
, signif_bon <=0.001 ~ '***'
, signif_bon <=0.01 ~ '**'
, signif_bon <0.05 ~ '*'
, TRUE ~ 'ns'))
# adjusted p-value:fdr
ks_df_l3$p_adj_fdr = p.adjust(ks_df_l3$ks_pvalue, method = "fdr")
ks_df_l3$signif_fdr = ks_df_l3$p_adj_fdr
ks_df_l3 = dplyr::mutate(ks_df_l3
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
, signif_fdr <=0.0001 ~ '****'
, signif_fdr <=0.001 ~ '***'
, signif_fdr <=0.01 ~ '**'
, signif_fdr <0.05 ~ '*'
, TRUE ~ 'ns'))
ks_df_l3
####################################################################
# combine all 3 ks_dfs
n_dfs = 3
if ( all.equal(nrow(ks_df_l1), nrow(ks_df_l2), nrow(ks_df_l3)) &&
all.equal(ncol(ks_df_l1), ncol(ks_df_l2), ncol(ks_df_l3)) ){
cat("\nPASS: Calculating expected rows and cols for sanity checks on combined_dfs")
expected_rows = nrow(ks_df_l1) * n_dfs
expected_cols = ncol(ks_df_l1)
ks_df_combined = rbind(ks_df_l1, ks_df_l2, ks_df_l3)
if ( nrow(ks_df_combined) == expected_rows && ncol(ks_df_combined) == expected_cols ){
cat("\nPASS: combined df successfully created"
, "\nnrow combined_df:", nrow(ks_df_combined)
, "\nncol combined_df:", ncol(ks_df_combined))
}
else{
cat("\nFAIL: Dim mismatch"
, "\nExpected rows:", expected_rows
, "\nGot:", nrow(ks_df_combined)
, "\nExpected cols:", expected_cols
, "\nGot:", ncol(ks_df_combined))
}
}else{
cat("\nFAIL: Could not generate expected_rows and/or expected_cols"
, "\nCheck hardcoded value of n_dfs")
}
#----------------------------
# ADD extra cols: formatting
#----------------------------
# adding pvalue_signif
ks_df_combined$pvalue_signif = ks_df_combined$ks_pvalue
str(ks_df_combined$pvalue_signif)
ks_df_combined = dplyr::mutate(ks_df_combined
, pvalue_signif = case_when(pvalue_signif == 0.05 ~ "."
, pvalue_signif <=0.0001 ~ '****'
, pvalue_signif <=0.001 ~ '***'
, pvalue_signif <=0.01 ~ '**'
, pvalue_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# Remove duplicates
rows_to_remove = c("L2 vs L1", "L3 vs L1", "L3 vs L2")
ks_df_combined_f = ks_df_combined[-match(rows_to_remove, ks_df_combined$comparison),]
#################################################################################
#================================
# R vs S distribution: Overall
#=================================
df_lin_R = df_lin[df_lin$sensitivity == "R",]
df_lin_S = df_lin[df_lin$sensitivity == "S",]
overall_RS_df = data.frame(comparison = NA, method = NA, ks_statistic = NA, ks_pvalue = NA
, n_samples = NA
, n_samples_total = NA)
comp_type = "overall R vs S distributions"
n_samples_R = nrow(df_lin_R)
n_samples_S = nrow(df_lin_S)
n_samples_all = paste0("R(n=", n_samples_R, ")" , " ", "S(n=", n_samples_S, ")")
n_samples_total = n_samples_R+n_samples_S
ks.test(df_lin_R$avg_stability_scaled
, df_lin_S$avg_stability_scaled)
ks_method = ks.test(df_lin_R$avg_stability_scaled
, df_lin_S$avg_stability_scaled)$method
ks_statistic = ks.test(df_lin_R$avg_stability_scaled
, df_lin_S$avg_stability_scaled)$statistic
ks_pvalue = ks.test(df_lin_R$avg_stability_scaled
, df_lin_S$avg_stability_scaled)$p.value
overall_RS_df$comparison = comp_type
overall_RS_df$method = ks_method
overall_RS_df$ks_statistic = ks_statistic
overall_RS_df$ks_pvalue = ks_pvalue
overall_RS_df$n_samples = n_samples_all
overall_RS_df$n_samples_total= n_samples_total
#----------------------------
# ADD extra cols
#----------------------------
# adjusted p-value: bonferroni
overall_RS_df$p_adj_bonferroni = p.adjust(overall_RS_df$ks_pvalue, method = "bonferroni")
overall_RS_df$signif_bon = overall_RS_df$p_adj_bonferroni
overall_RS_df = dplyr::mutate(overall_RS_df
, signif_bon = case_when(signif_bon == 0.05 ~ "."
, signif_bon <=0.0001 ~ '****'
, signif_bon <=0.001 ~ '***'
, signif_bon <=0.01 ~ '**'
, signif_bon <0.05 ~ '*'
, TRUE ~ 'ns'))
# adjusted p-value:fdr
overall_RS_df$p_adj_fdr = p.adjust(overall_RS_df$ks_pvalue, method = "fdr")
overall_RS_df$signif_fdr = overall_RS_df$p_adj_fdr
overall_RS_df = dplyr::mutate(overall_RS_df
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
, signif_fdr <=0.0001 ~ '****'
, signif_fdr <=0.001 ~ '***'
, signif_fdr <=0.01 ~ '**'
, signif_fdr <0.05 ~ '*'
, TRUE ~ 'ns'))
# unadjusted p-values
overall_RS_df$pvalue_signif = overall_RS_df$ks_pvalue
overall_RS_df = dplyr::mutate(overall_RS_df
, pvalue_signif = case_when(pvalue_signif == 0.05 ~ "."
, pvalue_signif <=0.0001 ~ '****'
, pvalue_signif <=0.001 ~ '***'
, pvalue_signif <=0.01 ~ '**'
, pvalue_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
#####################################################################
if (all(colnames(ks_df_combined_f) == colnames(overall_RS_df))){
cat("\nPASS:combining KS test results")
}else{
stop("\nAbort: Cannot combine results for KS test")
}
ks_df_combined_f2 = rbind(ks_df_combined_f, overall_RS_df)
# ADD extra cols
ks_df_combined_f2$ks_comp_type = "between_lineages"
ks_df_combined_f2$gene_name = tolower(gene)
ks_df_combined_f2
###########################################################################
#=================================
# Within lineage R vs S: MANUAL
#=================================
lin1 = df_lin[df_lin$lineage == my_lin1,]
ks.test(lin1$avg_stability_scaled[lin1$sensitivity == "R"]
, lin1$avg_stability_scaled[lin1$sensitivity == "S"])
lin2 = df_lin[df_lin$lineage == my_lin2,]
ks.test(lin2$avg_stability_scaled[lin2$sensitivity == "R"]
, lin2$avg_stability_scaled[lin2$sensitivity == "S"])
lin3 = df_lin[df_lin$lineage == "L3",]
ks.test(lin3$avg_stability_scaled[lin3$sensitivity == "R"]
, lin3$avg_stability_scaled[lin3$sensitivity == "S"])
lin4 = df_lin[df_lin$lineage == "L4",]
ks.test(lin4$avg_stability_scaled[lin4$sensitivity == "R"]
, lin4$avg_stability_scaled[lin4$sensitivity == "S"])
###################################################################
#=======================
# Within lineage R vs S: LOOP
#=======================
all_within_lin_df = data.frame()
for (i in c(my_lin1
, my_lin2
, my_lin3
)){
#cat(i)
within_lin_df = data.frame(comparison = NA, method = NA, ks_statistic = NA, ks_pvalue = NA
, n_samples = NA
, n_samples_total = NA)
within_lineage_comp = paste0(i, ": R vs S")
my_lin_df = df_lin[df_lin$lineage == i,]
lin_R_n = nrow(my_lin_df[my_lin_df$sensitivity == "R",])
lin_S_n = nrow(my_lin_df[my_lin_df$sensitivity == "S",])
lin_total_n = lin_R_n+lin_S_n
n_samples_all = paste0("R(n=", lin_R_n, ")" , ", ", "S(n=", lin_S_n, ")")
ks_method = ks.test(my_lin_df$avg_stability_scaled[my_lin_df$sensitivity == "R"]
, my_lin_df$avg_stability_scaled[my_lin_df$sensitivity == "S"])$method
ks_statistic = ks.test(my_lin_df$avg_stability_scaled[my_lin_df$sensitivity == "R"]
, my_lin_df$avg_stability_scaled[my_lin_df$sensitivity == "S"])$statistic
ks_pvalue =ks.test(my_lin_df$avg_stability_scaled[my_lin_df$sensitivity == "R"]
, my_lin_df$avg_stability_scaled[my_lin_df$sensitivity == "S"])$p.value
# print(c(lineage_comp, ks_method, ks_statistic[[1]], ks_pval))
within_lin_df$comparison = within_lineage_comp
within_lin_df$method = ks_method
within_lin_df$ks_statistic = ks_statistic[[1]]
within_lin_df$ks_pvalue = ks_pvalue
within_lin_df$n_samples = n_samples_all
within_lin_df$n_samples_total=lin_total_n
print(my_lin_df)
all_within_lin_df = rbind(all_within_lin_df, within_lin_df)
}
all_within_lin_df
#----------------------------
# ADD extra cols: formatting
#----------------------------
# adjusted p-value: bonferroni
all_within_lin_df$p_adj_bonferroni = p.adjust(all_within_lin_df$ks_pvalue, method = "bonferroni")
all_within_lin_df$signif_bon = all_within_lin_df$p_adj_bonferroni
all_within_lin_df = dplyr::mutate(all_within_lin_df
, signif_bon = case_when(signif_bon == 0.05 ~ "."
, signif_bon <=0.0001 ~ '****'
, signif_bon <=0.001 ~ '***'
, signif_bon <=0.01 ~ '**'
, signif_bon <0.05 ~ '*'
, TRUE ~ 'ns'))
# adjusted p-value:fdr
all_within_lin_df$p_adj_fdr = p.adjust(all_within_lin_df$ks_pvalue, method = "fdr")
all_within_lin_df$signif_fdr = all_within_lin_df$p_adj_fdr
all_within_lin_df = dplyr::mutate(all_within_lin_df
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
, signif_fdr <=0.0001 ~ '****'
, signif_fdr <=0.001 ~ '***'
, signif_fdr <=0.01 ~ '**'
, signif_fdr <0.05 ~ '*'
, TRUE ~ 'ns'))
# unadjusted p-value
all_within_lin_df$pvalue_signif = all_within_lin_df$ks_pvalue
str(all_within_lin_df$pvalue_signif)
all_within_lin_df = dplyr::mutate(all_within_lin_df
, pvalue_signif = case_when(pvalue_signif == 0.05 ~ "."
, pvalue_signif <=0.0001 ~ '****'
, pvalue_signif <=0.001 ~ '***'
, pvalue_signif <=0.01 ~ '**'
, pvalue_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# ADD info cols
all_within_lin_df$ks_comp_type = "within_lineages"
all_within_lin_df$gene_name = tolower(gene)
##################################################################
if (all(colnames(ks_df_combined_f2) == colnames(all_within_lin_df))){
cat("\nPASS:combining KS test results")
}else{
stop("\nAbort: Cannot combine results for KS test")
}
ks_df_combined_all = rbind(ks_df_combined_f2, all_within_lin_df)
#--------------------
# write output file: KS test within grpup
#----------------------
Out_ks_all = paste0(outdir_stats
, tolower(gene)
, "_ks_lineage_all_comp.csv")
cat("Output of KS test all comparisons:", Out_ks_all )
write.csv(ks_df_combined_all, Out_ks_all, row.names = FALSE)