breakage
This commit is contained in:
parent
14f8f5d6d4
commit
c0f59bc9c9
5 changed files with 74 additions and 12 deletions
|
@ -23,14 +23,19 @@ lin_count_bp_diversity <- function( lf_data = lin_wf
|
||||||
, my_xals = 22 # x axis label size
|
, my_xals = 22 # x axis label size
|
||||||
, my_yals = 22 # y axis label size
|
, my_yals = 22 # y axis label size
|
||||||
, my_lls = 22 # legend label size
|
, my_lls = 22 # legend label size
|
||||||
, bar_col_labels = c("Mutations", "Total Samples")
|
, bar_col_labels = "" #c("Mutations", "Total Samples")
|
||||||
, bar_col_values = c("grey50", "gray75")
|
, bar_col_values = c("gray50", "gray75")
|
||||||
, bar_leg_name = ""
|
, bar_leg_name = ""
|
||||||
, leg_location = "top"
|
, leg_location = "top"
|
||||||
, y_log10 = FALSE
|
, y_log10 = FALSE
|
||||||
, y_scale_percent = FALSE
|
, y_scale_percent = FALSE
|
||||||
#, y_label = c("Count", "SNP diversity")
|
#, y_label = c("Count", "SNP diversity")
|
||||||
, y_label = c("SNP diversity")
|
, y_label = c("SNP diversity")
|
||||||
|
, bp_plot_title = ""
|
||||||
|
, title_colour = "chocolate4"
|
||||||
|
, subtitle_text = NULL
|
||||||
|
, sts = 20
|
||||||
|
, subtitle_colour = "#350E20FF" #brown
|
||||||
) {
|
) {
|
||||||
if(!all_lineages){
|
if(!all_lineages){
|
||||||
lf_data = lf_data[lf_data[[x_categ]]%in%use_lineages,]
|
lf_data = lf_data[lf_data[[x_categ]]%in%use_lineages,]
|
||||||
|
@ -58,7 +63,13 @@ lin_count_bp_diversity <- function( lf_data = lin_wf
|
||||||
, axis.title.y = element_text(size = my_yals
|
, axis.title.y = element_text(size = my_yals
|
||||||
, colour = "black")
|
, colour = "black")
|
||||||
, legend.position = leg_location
|
, legend.position = leg_location
|
||||||
, legend.text = element_text(size = my_lls)) +
|
, legend.text = element_text(size = my_lls)
|
||||||
|
, plot.title = element_text(size = my_lls
|
||||||
|
, colour = title_colour
|
||||||
|
, hjust = 0.5)
|
||||||
|
, plot.subtitle = element_text(size = sts
|
||||||
|
, hjust = 0.5
|
||||||
|
, colour = subtitle_colour)) +
|
||||||
|
|
||||||
geom_label(aes(label = eval(parse(text = display_label_col)))
|
geom_label(aes(label = eval(parse(text = display_label_col)))
|
||||||
, size = d_lab_size
|
, size = d_lab_size
|
||||||
|
@ -72,10 +83,16 @@ lin_count_bp_diversity <- function( lf_data = lin_wf
|
||||||
scale_fill_manual(values = bar_col_values
|
scale_fill_manual(values = bar_col_values
|
||||||
, name = bar_leg_name
|
, name = bar_leg_name
|
||||||
, labels = bar_col_labels) +
|
, labels = bar_col_labels) +
|
||||||
labs(title = ""
|
# labs(title = ""
|
||||||
, x = ""
|
# , x = ""
|
||||||
, y = y_label
|
# , y = y_label
|
||||||
, colour = "black")
|
# , colour = "black")
|
||||||
|
#
|
||||||
|
labs(title = bp_plot_title
|
||||||
|
, subtitle = subtitle_text
|
||||||
|
, x = ""
|
||||||
|
, y = y_label
|
||||||
|
, colour = "black")
|
||||||
|
|
||||||
if (y_log10){
|
if (y_log10){
|
||||||
|
|
||||||
|
@ -90,10 +107,11 @@ lin_count_bp_diversity <- function( lf_data = lin_wf
|
||||||
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
|
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
|
||||||
#scale_y_continuous(labels = scales::percent) +
|
#scale_y_continuous(labels = scales::percent) +
|
||||||
|
|
||||||
labs(title = ""
|
labs(title = bp_plot_title
|
||||||
, x = ""
|
, subtitle = subtitle_text
|
||||||
, y = y_label
|
, x = ""
|
||||||
, colour = "black")
|
, y = y_label
|
||||||
|
, colour = "black")
|
||||||
}
|
}
|
||||||
|
|
||||||
return(OutPlot)
|
return(OutPlot)
|
||||||
|
|
|
@ -343,6 +343,29 @@ combining_dfs_plotting <- function( my_df_u
|
||||||
, "\nNo. of rows merged_df3: ", nrow(merged_df3))
|
, "\nNo. of rows merged_df3: ", nrow(merged_df3))
|
||||||
quit()
|
quit()
|
||||||
}
|
}
|
||||||
|
#---------------------------------------------
|
||||||
|
# add columns that are needed to generate plots with revised colnames and strings
|
||||||
|
#----------------------------------------------
|
||||||
|
merged_df3['sensitivity'] = ifelse(merged_df3['dst_mode'] == 1, "R", "S")
|
||||||
|
merged_df3['mutation_info_labels'] = ifelse(merged_df3['mutation_info_labels'] == "DM", "R", "S")
|
||||||
|
|
||||||
|
merged_df2['sensitivity'] = ifelse(merged_df2['dst_mode'] == 1, "R", "S")
|
||||||
|
merged_df2['mutation_info_labels'] = ifelse(merged_df2['mutation_info_labels'] == "DM", "R", "S")
|
||||||
|
|
||||||
|
#check1 = all(table(merged_df3["mutation_info_labels"]) == table(merged_df3['sensitivity']))
|
||||||
|
#check2 = all(table(merged_df2["mutation_info_labels"]) == table(merged_df2['sensitivity']))
|
||||||
|
|
||||||
|
check1 = all(merged_df3["mutation_info_labels"] == merged_df3['sensitivity'])
|
||||||
|
check2 = all(merged_df2["mutation_info_labels"] == merged_df2['sensitivity'])
|
||||||
|
|
||||||
|
if(check1 && check2){
|
||||||
|
cat("PASS: merged_df3 and merged_df2 have mutation info labels as R and S"
|
||||||
|
, "\nIt also has sensitivity column"
|
||||||
|
, "\nThese are identical")
|
||||||
|
}else{
|
||||||
|
stop("Abort: merged_df3 or merged_df2 can't be created because of lable mismatch")
|
||||||
|
}
|
||||||
|
|
||||||
return(list( merged_df2
|
return(list( merged_df2
|
||||||
, merged_df3
|
, merged_df3
|
||||||
))
|
))
|
||||||
|
|
|
@ -37,6 +37,11 @@
|
||||||
#1) df to choose (merged_df3 or merged_df2)
|
#1) df to choose (merged_df3 or merged_df2)
|
||||||
#2)
|
#2)
|
||||||
##################################################################
|
##################################################################
|
||||||
|
DistCutOff = 10
|
||||||
|
LigDist_colname # = "ligand_distance" # from globals
|
||||||
|
ppi2Dist_colname = "interface_dist"
|
||||||
|
naDist_colname = "TBC"
|
||||||
|
|
||||||
dm_om_wf_lf_data <- function(df
|
dm_om_wf_lf_data <- function(df
|
||||||
, gene_name = gene # from globals
|
, gene_name = gene # from globals
|
||||||
, colnames_to_extract
|
, colnames_to_extract
|
||||||
|
@ -51,6 +56,15 @@ dm_om_wf_lf_data <- function(df
|
||||||
, dr_other_muts_labels = c("DM", "OM") # only used if ^^ = ""
|
, dr_other_muts_labels = c("DM", "OM") # only used if ^^ = ""
|
||||||
, categ_cols_to_factor){
|
, categ_cols_to_factor){
|
||||||
|
|
||||||
|
df = as.data.frame(df)
|
||||||
|
|
||||||
|
df['sensitivity'] = ifelse(df['dst_mode'] == 1, "R", "S")
|
||||||
|
table(df['sensitivity'])
|
||||||
|
|
||||||
|
df[[mut_info_label_colname]] = ifelse(df[[mut_info_label_colname]] == "DM", "R", "S")
|
||||||
|
table(df[[mut_info_label_colname]])
|
||||||
|
|
||||||
|
|
||||||
# Initialise the required dfs based on gene name
|
# Initialise the required dfs based on gene name
|
||||||
geneL_normal = c("pnca")
|
geneL_normal = c("pnca")
|
||||||
#geneL_na_dy = c("gid")
|
#geneL_na_dy = c("gid")
|
||||||
|
@ -124,6 +138,7 @@ dm_om_wf_lf_data <- function(df
|
||||||
, mut_colname, mut_info_colname, mut_info_label_colname
|
, mut_colname, mut_info_colname, mut_info_label_colname
|
||||||
, aa_pos_colname
|
, aa_pos_colname
|
||||||
, LigDist_colname
|
, LigDist_colname
|
||||||
|
, ppi2Dist_colname, naDist_colname
|
||||||
, "duet_stability_change" , "duet_scaled" , "duet_outcome"
|
, "duet_stability_change" , "duet_scaled" , "duet_outcome"
|
||||||
, "ligand_affinity_change", "affinity_scaled" , "ligand_outcome"
|
, "ligand_affinity_change", "affinity_scaled" , "ligand_outcome"
|
||||||
, "ddg_foldx" , "foldx_scaled" , "foldx_outcome"
|
, "ddg_foldx" , "foldx_scaled" , "foldx_outcome"
|
||||||
|
|
|
@ -144,6 +144,7 @@ cat(s3)
|
||||||
# location: scripts/functions/corr_plot_data.R
|
# location: scripts/functions/corr_plot_data.R
|
||||||
####################################################################
|
####################################################################
|
||||||
# make sure the above script works because merged_df2_combined is needed
|
# make sure the above script works because merged_df2_combined is needed
|
||||||
|
merged_df3 = as.data.frame(merged_df3)
|
||||||
|
|
||||||
corr_df_m3_f = corr_data_extract(merged_df3, extract_scaled_cols = F)
|
corr_df_m3_f = corr_data_extract(merged_df3, extract_scaled_cols = F)
|
||||||
head(corr_df_m3_f)
|
head(corr_df_m3_f)
|
||||||
|
|
|
@ -48,7 +48,12 @@ lin_diversityP = lin_count_bp_diversity(lf_data = lineage_dfL[['lin_wf']]
|
||||||
, y_log10 = F
|
, y_log10 = F
|
||||||
, y_scale_percent = F
|
, y_scale_percent = F
|
||||||
, leg_location = "top"
|
, leg_location = "top"
|
||||||
, y_label = "SNP diversity")
|
, y_label = "Percent" #"SNP diversity"
|
||||||
|
, bp_plot_title = "SNP diversity"
|
||||||
|
, title_colour = "black" #"chocolate4"
|
||||||
|
, subtitle_text = NULL
|
||||||
|
, sts = 20
|
||||||
|
, subtitle_colour = "#350E20FF")
|
||||||
|
|
||||||
#=============================================
|
#=============================================
|
||||||
# Output plots: Lineage count and Diversity
|
# Output plots: Lineage count and Diversity
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue