adde format_results_dynamut2.py and ran shiny scripts for barplots

This commit is contained in:
Tanushree Tunstall 2021-08-19 16:25:38 +01:00
parent 9cb33ed67b
commit c0c30fd527
9 changed files with 235 additions and 59 deletions

View file

@ -123,7 +123,7 @@ def format_dynamut_output(dynamut_output_csv):
# reorder columns
#############
dynamut_data.columns
dynamut_dataf = dynamut_data[['mutationinformation'
dynamut_data_f = dynamut_data[['mutationinformation'
, 'ddg_dynamut'
, 'ddg_dynamut_scaled'
@ -149,13 +149,14 @@ def format_dynamut_output(dynamut_output_csv):
, 'dds_encom_scaled'
, 'dds_encom_outcome']]
if len(dynamut_data.columns) == len(dynamut_dataf):
if len(dynamut_data.columns) == len(dynamut_data_f.columns) and sorted(dynamut_data.columns) == sorted(dynamut_data_f.columns):
print('\nPASS: outcome_classification, scaling and column reordering completed')
else:
print('\nFAIL: Something went wrong...'
, '\nExpected length: ', len(dynamut_data.columns)
, '\nGot: ', len(dynamut_dataf))
, '\nGot: ', len(dynamut_data_f.columns))
sys.exit()
return(dynamut_dataf)
return(dynamut_data_f)
#%%#####################################################################

View file

@ -0,0 +1,137 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 19 14:33:51 2020
@author: tanu
"""
#%% load packages
import os,sys
import subprocess
import argparse
import requests
import re
import time
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype
#%%#####################################################################
def format_dynamut2_output(dynamut_output_csv):
"""
@param dynamut_output_csv: file containing dynamut2 results for all muts
which is the result of combining all dynamut2_output batch results, and using
bash scripts to combine all the batch results into one file.
Dynamut2ran manually from batches
Formatting df to a pandas df and output as csv.
@type string
@return (not true) formatted csv for dynamut output
@type pandas df
"""
#############
# Read file
#############
dynamut_data_raw = pd.read_csv(dynamut_output_csv, sep = ',')
# strip white space from both ends in all columns
dynamut_data = dynamut_data_raw.apply(lambda x: x.str.strip() if x.dtype == 'object' else x)
dforig_shape = dynamut_data.shape
print('dimensions of input file:', dforig_shape)
#%%============================================================================
#####################################
# create binary cols for ddg_dynamut2
# >=0: Stabilising
######################################
outcome_cols = ['ddg_dynamut2']
# col test: ddg_dynamut
#len(dynamut_data[dynamut_data['ddg_dynamut'] >= 0])
#dynamut_data['ddg_dynamut_outcome'] = dynamut_data['ddg_dynamut'].apply(lambda x: 'Stabilising' if x >= 0 else 'Destabilising')
#len(dynamut_data[dynamut_data['ddg_dynamut_outcome'] == 'Stabilising'])
print('\nCreating classification cols for', len(outcome_cols), 'columns'
, '\nThese are:')
for cols in outcome_cols:
print(cols)
tot_muts = dynamut_data[cols].count()
print('\nTotal entries:', tot_muts)
outcome_colname = cols + '_outcome'
print(cols, ':', outcome_colname)
c1 = len(dynamut_data[dynamut_data[cols] >= 0])
dynamut_data[outcome_colname] = dynamut_data[cols].apply(lambda x: 'Stabilising' if x >= 0 else 'Destabilising')
c2 = len(dynamut_data[dynamut_data[outcome_colname] == 'Stabilising'])
if c1 == c2:
print('\nPASS: outcome classification column created successfully'
, '\nColumn created:', outcome_colname
#, '\nNo. of stabilising muts: ', c1
#, '\nNo. of DEstabilising muts: ', tot_muts-c1
, '\n\nCateg counts:\n', dynamut_data[outcome_colname].value_counts() )
else:
print('\nFAIL: outcome classification numbers MISmatch'
, '\nexpected length:', c1
, '\nGot:', c2)
#%%=====================================================================
################################
# scale all ddg_dynamut2 values
#################################
# Rescale values in all ddg_dynamut2 col col b/w -1 and 1 so negative numbers
# stay neg and pos numbers stay positive
outcome_cols = ['ddg_dynamut2']
for cols in outcome_cols:
#print(cols)
col_max = dynamut_data[cols].max()
col_min = dynamut_data[cols].min()
print( '\n===================='
, '\nColname:', cols
, '\n===================='
, '\nMax: ', col_max
, '\nMin: ', col_min)
scaled_colname = cols + '_scaled'
print('\nCreated scaled colname for', cols, ':', scaled_colname)
col_scale = lambda x : x/abs(col_min) if x < 0 else (x/col_max if x >= 0 else 'failed')
dynamut_data[scaled_colname] = dynamut_data[cols].apply(col_scale)
col_scaled_max = dynamut_data[scaled_colname].max()
col_scaled_min = dynamut_data[scaled_colname].min()
print( '\n===================='
, '\nColname:', scaled_colname
, '\n===================='
, '\nMax: ', col_scaled_max
, '\nMin: ', col_scaled_min)
#%%=====================================================================
#############
# reorder columns
#############
dynamut_data.columns
dynamut_data_f = dynamut_data[['mutationinformation'
, 'chain'
, 'ddg_dynamut2'
, 'ddg_dynamut2_scaled'
, 'ddg_dynamut2_outcome']]
if len(dynamut_data.columns) == len(dynamut_data_f.columns) and sorted(dynamut_data.columns) == sorted(dynamut_data_f.columns):
print('\nPASS: outcome_classification, scaling and column reordering completed')
else:
print('\nFAIL: Something went wrong...'
, '\nExpected length: ', len(dynamut_data.columns)
, '\nGot: ', len(dynamut_data_f.columns))
sys.exit()
return(dynamut_data_f)
#%%#####################################################################

View file

@ -15,9 +15,9 @@ import os
homedir = os.path.expanduser('~')
os.chdir (homedir + '/git/LSHTM_analysis/dynamut')
from format_results_dynamut import *
from format_results_dynamut2 import *
########################################################################
# variables
# TODO: add cmd line args
gene = 'gid'
@ -26,28 +26,47 @@ datadir = homedir + '/git/Data'
indir = datadir + '/' + drug + '/input'
outdir = datadir + '/' + drug + '/output'
outdir_dynamut = outdir + '/dynamut_results/'
outdir_dynamut2 = outdir + '/dynamut_results/dynamut2/'
# Input file
infile_dynamut = outdir_dynamut + gene + '_dynamut_all_output_clean.csv'
infile_dynamut2 = outdir_dynamut2 + gene + '_dynamut2_output_combined_clean.csv'
# Formatted output filename
outfile_dynamut_f = outdir_dynamut + gene + '_complex_dynamut_norm.csv'
outfile_dynamut_f = outdir_dynamut2 + gene + '_complex_dynamut_norm.csv'
outfile_dynamut2_f = outdir_dynamut2 + gene + '_complex_dynamut2_norm.csv'
#==========================
# CALL: format_results_mcsm_na()
# Data: gid+streptomycin
#==========================
print('Formatting results for:', infile_dynamut)
dynamut_df_f = format_dynamut_output(dynamut_output_csv = infile_dynamut)
#===============================
# CALL: format_results_dynamut
# DYNAMUT results
# #===============================
# print('Formatting results for:', infile_dynamut)
# dynamut_df_f = format_dynamut_output(infile_dynamut)
# # writing file
# print('Writing formatted dynamut df to csv')
# dynamut_df_f.to_csv(outfile_dynamut_f, index = False)
# print('Finished writing file:'
# , '\nFile:', outfile_dynamut_f
# , '\nExpected no. of rows:', len(dynamut_df_f)
# , '\nExpected no. of cols:', len(dynamut_df_f.columns)
# , '\n=============================================================')
#===============================
# CALL: format_results_dynamut2
# DYNAMUT2 results
#===============================
print('Formatting results for:', infile_dynamut2)
dynamut2_df_f = format_dynamut2_output(infile_dynamut2) # dynamut2
# writing file
print('Writing formatted dynamut df to csv')
dynamut_df_f.to_csv(outfile_dynamut_f, index = False)
print('Writing formatted dynamut2 df to csv')
dynamut2_df_f.to_csv(outfile_dynamut2_f, index = False)
print('Finished writing file:'
, '\nFile:', outfile_dynamut_f
, '\nExpected no. of rows:', len(dynamut_df_f)
, '\nExpected no. of cols:', len(dynamut_df_f.columns)
, '\nFile:', outfile_dynamut2_f
, '\nExpected no. of rows:', len(dynamut2_df_f)
, '\nExpected no. of cols:', len(dynamut2_df_f.columns)
, '\n=============================================================')
#%%#####################################################################

View file

@ -24,20 +24,9 @@ indir = datadir + drug + '/input/'
outdir = datadir + drug + '/output/'
outdir_dynamut_temp = outdir + 'dynamut_results/dynamut_temp/'
#==============================================================================
# batch 8: 08.txt, # RETRIEVED 23 Feb 08:54
#my_url_file = outdir + '/dynamut_temp/dynamut_result_url_gid_b8.txt'
#my_suffix = 'gid_b7'
#b09 and b10 failed, ran by Carlos, and returned results on 12 Aug
# batch 9 and 10: RETRIEVED 12 Aug 09:25
#my_url_file = outdir_dynamut_temp + 'dynamut_result_url_gid_b10.txt'
#my_suffix = 'gid_b10'
# batch10_21: from bissection: humour me! (don't need since b10 ran
# from dynamut team, but still its ready to extract it!) RETRIEVED 12 Aug 17:37
my_url_file = outdir_dynamut_temp + 'dynamut_result_url_gid_b10_21.txt'
my_suffix = 'gid_b10_21'
# batch 7 (previously 1b file): RETRIEVED 17 Aug 16:40
my_url_file = outdir_dynamut_temp + 'dynamut_result_url_gid_b7.txt'
my_suffix = 'gid_b7'
#==============================================================================
#==========================

View file

@ -30,8 +30,12 @@ site_snp_count_bp <- function (plotdf
, axis_text_size = 25
, axis_label_size = 22
, xaxis_title = "Number of nsSNPs"
, yaxis_title = "Number of Sites"){
, yaxis_title = "Number of Sites"
, title_colour = "chocolate4"
, subtitle_text = NULL
, subtitle_size = 20
, subtitle_colour = "pink")
{
# dim of plotdf
cat(paste0("\noriginal df dimensions:"
, "\nNo. of rows:", nrow(plotdf)
@ -83,9 +87,9 @@ site_snp_count_bp <- function (plotdf
# FIXME: should really be legend title
# but atm being using as plot title
my_leg_title = paste0("Total nsSNPs:", tot_muts
#my_leg_title
bp_plot_title = paste0("Total nsSNPs: ", tot_muts
, ", Total no. of nsSNPs sites: ", tot_sites)
bp_plot_title = my_leg_title
#-------------
# start plot 2
@ -111,9 +115,14 @@ site_snp_count_bp <- function (plotdf
#, legend.position = c(0.73,0.8)
#, legend.text = element_text(size = leg_text_size)
#, legend.title = element_text(size = axis_label_size)
, plot.title = element_text(size = leg_text_size)) +
, plot.title = element_text(size = leg_text_size
, colour = title_colour)
, plot.subtitle = element_text(size = subtitle_size
, hjust = 0.5
, colour = subtitle_colour)) +
labs(title = bp_plot_title
, subtitle = subtitle_text
, x = xaxis_title
, y = yaxis_title)

View file

@ -22,7 +22,14 @@ stability_count_bp <- function(plotdf
, leg_text_size = 20
, leg_title_size = 22
, yaxis_title = "Number of nsSNPs"
, bp_plot_title = ""){
, bp_plot_title = ""
, label_categories = c("Destabilising", "Stabilising")
, title_colour = "chocolate4"
, subtitle_text = NULL
, subtitle_size = 20
, subtitle_colour = "pink"
#, leg_position = c(0.73,0.8) # within plot area
, leg_position = "top"){
OutPlot_count = ggplot(plotdf, aes(x = eval(parse(text = df_colname)))) +
geom_bar(aes(fill = eval(parse(text = df_colname))), show.legend = TRUE) +
@ -35,14 +42,20 @@ stability_count_bp <- function(plotdf
, axis.title.x = element_blank()
, axis.title.y = element_text(size = axis_label_size)
, axis.text.y = element_text(size = axis_text_size)
, legend.position = c(0.73,0.8)
, legend.position = leg_position
, legend.text = element_text(size = leg_text_size)
, legend.title = element_text(size = leg_title_size)
, plot.title = element_text(size = axis_label_size)) +
, plot.title = element_text(size = axis_label_size
, colour = title_colour)
, plot.subtitle = element_text(size = subtitle_size
, hjust = 0.5
, colour = subtitle_colour)) +
labs(title = bp_plot_title
, subtitle = subtitle_text
, y = yaxis_title) +
scale_fill_discrete(name = leg_title
, labels = c("Destabilising", "Stabilising"))
#, labels = c("Destabilising", "Stabilising")
, labels = label_categories)
return(OutPlot_count)
}

View file

@ -6,21 +6,24 @@ getwd()
# load functions, data, dirs, hardocded vars
# that will be used in testing the functions
#===========================================
source("plotting_data.R")
infile = "/home/tanu/git/Data/streptomycin/output/gid_comb_stab_struc_params.csv"
drug = "streptomycin"
gene = "gid"
source("plotting_data.R")
infile = paste0("~/git/Data/", drug, "/output/", gene, "_comb_stab_struc_params.csv")
infile_df = read.csv(infile)
lig_dist = 5
pd_df = plotting_data(infile_df
, lig_dist_colname = 'ligand_distance'
, lig_dist_cutoff = lig_dist)
pd_df = plotting_data(infile)
my_df = pd_df[[1]]
my_df_u = pd_df[[2]]
my_df_u_lig = pd_df[[3]]
dup_muts = pd_df[[4]]
source("plotting_globals.R")
drug = "streptomycin"
gene = "gid"
import_dirs(drug, gene)
#=====================
# functions to test
#=====================
@ -40,7 +43,9 @@ print(paste0("plot filename:", basic_bp_duet))
# function only
stability_count_bp(plotdf = my_df_u
, df_colname = "duet_outcome"
, leg_title = "DUET outcome")
, leg_title = "DUET outcome"
, label_categories = c("Destabilising", "Stabilising")
, leg_position = "top")
dev.off()
@ -54,10 +59,13 @@ svg(plot_basic_bp_ligand)
print(paste0("plot filename:", basic_bp_ligand))
# function only
lig_dist = 10
stability_count_bp(plotdf = my_df_u_lig
, df_colname = "ligand_outcome"
, leg_title = "Ligand outcome"
, bp_plot_title = "Sites < 10 Ang of ligand")
, yaxis_title = paste0("Number of nsSNPs\nLigand dist: <", lig_dist, "\u212b")
#, bp_plot_title = "Sites < 10 Ang of ligand"
)
dev.off()
# ------------------------------

View file

@ -103,7 +103,7 @@ cat(paste0("Directories imported:"
cat(paste0("\nVariables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\n))
, "\n"))
#, "\ngene_match:", gene_match
#, "\nLength of upos:", length(upos)
#, "\nAngstrom symbol:", angstroms_symbol))