scripts generating axis coloured subcols bp for PS

This commit is contained in:
Tanushree Tunstall 2020-07-15 16:31:10 +01:00
parent 636100d383
commit bf4a427239
4 changed files with 685 additions and 0 deletions

View file

@ -0,0 +1,212 @@
getwd()
setwd('~/git/LSHTM_analysis/scripts/plotting')
getwd()
#########################################################
# TASK:
#########################################################
############################################################
# 1: Installing and loading required packages and functions
############################################################
#source('Header_TT.R')
source('barplot_colour_function.R')
############################################################
# 2: Read file: struct params data with columns containing
# colours for axis labels
############################################################
#source("subcols_axis.R")
source("subcols_axis_PS.R")
# this should return
# mut_pos_cols
# my_df
# my_df_u: df with unique mutations
# clear excess variable
# "mut_pos_cols" is just for inspection in case you need to cross check
# position numbers and colours
# open file from deskptop ("sample_axis_cols") for cross checking
table(mut_pos_cols$lab_bg)
sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
table(mut_pos_cols$lab_bg2)
sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
table(mut_pos_cols$lab_fg)
sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
# very important!
my_axis_colours = mut_pos_cols$lab_fg
# now clear mut_pos_cols
rm(mut_pos_cols)
###########################
# 2: Plot: DUET scores
###########################
#==========================
# Plot 2: Barplot with scores (unordered)
# corresponds to duet_outcome
# Stacked Barplot with colours: duet_outcome @ position coloured by
# stability scores. This is a barplot where each bar corresponds
# to a SNP and is coloured by its corresponding DUET stability value.
# Normalised values (range between -1 and 1 ) to aid visualisation
# NOTE: since barplot plots discrete values, colour = score, so number of
# colours will be equal to the no. of unique normalised scores
# rather than a continuous scale
# will require generating the colour scale separately.
#============================
# sanity checks
upos = unique(my_df$position)
table(my_df$duet_outcome)
table(my_df_u$duet_outcome)
#===========================
# Data preparation for plots
#===========================
# REASSIGNMENT as necessary
df <- my_df_u
rm(my_df, my_df_u)
# add frequency of positions
library(data.table)
setDT(df)[, pos_count := .N, by = .(position)]
# this is cummulative
table(df$pos_count)
# use group by on this
library(dplyr)
snpsBYpos_df <- df %>%
group_by(position) %>%
summarize(snpsBYpos = mean(pos_count))
table(snpsBYpos_df$snpsBYpos)
snp_count = sort(unique(snpsBYpos_df$snpsBYpos))
# sanity checks
# should be a factor
is.factor(df$duet_outcome)
#TRUE
table(df$duet_outcome)
# should be -1 and 1
min(df$duet_scaled)
max(df$duet_scaled)
# sanity checks
# very important!!!!
tapply(df$duet_scaled, df$duet_outcome, min)
tapply(df$duet_scaled, df$duet_outcome, max)
# My colour FUNCTION: based on group and subgroup
# in my case;
# df = df
# group = duet_outcome
# subgroup = normalised score i.e duet_scaled
# check unique values in normalised data
u = unique(df$duet_scaled)
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Run this section if rounding is to be used
# specify number for rounding
n = 3
df$duet_scaledR = round(df$duet_scaled, n)
ur = unique(df$duet_scaledR)
# create an extra column called group which contains the "gp name and score"
# so colours can be generated for each unique values in this column
#my_grp = df$duet_scaledR # rounding
my_grp = df$duet_scaled # no rounding
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
df$group <- paste0(df$duet_outcome, "_", my_grp, sep = "")
# Call the function to create the palette based on the group defined above
colours <- ColourPalleteMulti(df, "duet_outcome", "my_grp")
print(paste0('Colour palette generated for: ', length(colours), ' colours'))
my_title = "Protein stability (DUET)"
#========================
# plot with axis colours
#========================
class(df$lab_bg)
# define cartesian coord
my_xlim = length(unique(df$position)); my_xlim
# axis label size
my_xals = 18
my_yals = 18
# axes text size
my_xats = 14
my_yats = 18
#******************
# generate plot: with axis colours
#******************
# plot name and location
# outdir/ (should be imported from reading file)
print(paste0('plot will be in:', outdir))
bp_aa_subcols_duet = "barplot_acoloured_PS.svg"
plot_bp_aa_subcols_duet = paste0(outdir, "/plots/", bp_aa_subcols_duet)
print(paste0('plot name:', plot_bp_aa_subcols_duet))
svg(plot_bp_aa_subcols_duet, width = 26, height = 4)
g = ggplot(df, aes(factor(position, ordered = T)))
outPlot = g +
coord_cartesian(xlim = c(1, my_xlim)
#, ylim = c(0, 6)
, ylim = c(0, max(snp_count))
, clip = "off") +
geom_bar(aes(fill = group), colour = "grey") +
scale_fill_manual(values = colours
, guide = 'none') +
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
, fill = df$lab_bg) +
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
, fill = df$lab_bg2) +
# Here it's important to specify that your axis goes from 1 to max number of levels
theme(axis.text.x = element_text(size = my_xats
, angle = 90
, hjust = 1
, vjust = 0.4
, colour = my_axis_colours)
, axis.text.y = element_text(size = my_yats
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = my_xals)
, axis.title.y = element_text(size = my_yals )
, axis.ticks.x = element_blank()) +
labs(title = ""
, x = "position"
, y = "Frequency")
print(outPlot)
dev.off()
#!!!!!!!!!!!!!!!!
#Warning message:
# Vectorized input to `element_text()` is not officially supported.
#Results may be unexpected or may change in future versions of ggplot2.
#!!!!!!!!!!!!!!!!!
# for sanity and good practice
#rm(df)