import commit

This commit is contained in:
Tanushree Tunstall 2020-01-08 16:15:33 +00:00
commit bccfe68192
39 changed files with 6837 additions and 0 deletions

View file

@ -0,0 +1,154 @@
getwd()
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
getwd()
########################################################################
# Installing and loading required packages #
########################################################################
source("../Header_TT.R")
########################################################################
# Read file: call script for combining df for lig #
########################################################################
source("../combining_two_df_lig.R")
#---------------------- PAY ATTENTION
# the above changes the working dir
#[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts"
#---------------------- PAY ATTENTION
#==========================
# This will return:
# df with NA:
# merged_df2
# merged_df3
# df without NA:
# merged_df2_comp
# merged_df3_comp
#===========================
###########################
# Data for Lig plots
# you need merged_df3
# or
# merged_df3_comp
# since these have unique SNPs
# I prefer to use the merged_df3
# because using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available
###########################
# uncomment as necessary
#%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
my_df = merged_df3
#my_df = merged_df3_comp
#%%%%%%%%%%%%%%%%%%%%%%%%
# delete variables not required
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_df)
str(my_df)
#############################
# Extra sanity check:
# for mcsm_lig ONLY
# Dis_lig_Ang should be <10
#############################
if (max(my_df$Dis_lig_Ang) < 10){
print ("Sanity check passed: lig data is <10Ang")
}else{
print ("Error: data should be filtered to be within 10Ang")
}
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
#==========================
# Plot: Barplot with scores (unordered)
# corresponds to Lig_outcome
# Stacked Barplot with colours: Lig_outcome @ position coloured by
# Lig_outcome. This is a barplot where each bar corresponds
# to a SNP and is coloured by its corresponding Lig_outcome.
#============================
#===================
# Data for plots
#===================
#%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
df = my_df
#%%%%%%%%%%%%%%%%%%%%%%%%
rm(my_df)
# sanity checks
upos = unique(my_df$Position)
# should be a factor
is.factor(df$Lig_outcome)
#TRUE
table(df$Lig_outcome)
# should be -1 and 1: may not be in this case because you have filtered the data
# FIXME: normalisation before or after filtering?
min(df$ratioPredAff) #
max(df$ratioPredAff) #
# sanity checks
tapply(df$ratioPredAff, df$Lig_outcome, min)
tapply(df$ratioPredAff, df$Lig_outcome, max)
#******************
# generate plot
#******************
# set output dir for plots
getwd()
setwd("~/git/Data/pyrazinamide/output/plots")
getwd()
my_title = "Ligand affinity"
# axis label size
my_xaxls = 13
my_yaxls = 15
# axes text size
my_xaxts = 15
my_yaxts = 15
# no ordering of x-axis
g = ggplot(df, aes(factor(Position, ordered = T)))
g +
geom_bar(aes(fill = Lig_outcome), colour = "grey") +
theme( axis.text.x = element_text(size = my_xaxls
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = my_yaxls
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = my_xaxts)
, axis.title.y = element_text(size = my_yaxts ) ) +
labs(title = my_title
, x = "Position"
, y = "Frequency")
# for sanity and good practice
rm(df)
#======================= end of plot
# axis colours labels
# https://stackoverflow.com/questions/38862303/customize-ggplot2-axis-labels-with-different-colors
# https://stackoverflow.com/questions/56543485/plot-coloured-boxes-around-axis-label