added run_7030.py that runs as cmd for all gene targets and sampling methods and outputs a single csv

This commit is contained in:
Tanushree Tunstall 2022-06-21 20:37:53 +01:00
parent 5b0ccdfec4
commit bc12dbd7c2
5 changed files with 749 additions and 229 deletions

View file

@ -52,7 +52,7 @@ sampling_type_name = 'none'
feature_gp_nameEV = 'evolutionary'
n_featuresEV = len(X_evolFN)
scores_mmEV = MultModelsCl_dissected(input_df = X[X_evolFN]
scores_mmEV = MultModelsCl(input_df = X[X_evolFN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
@ -96,7 +96,7 @@ baseline_EV['n_features'] = n_featuresEV
feature_gp_nameGN = 'genomics'
n_featuresGN = len(X_genomicFN)
scores_mmGN = MultModelsCl_dissected(input_df = X[X_genomicFN]
scores_mmGN = MultModelsCl(input_df = X[X_genomicFN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
@ -143,7 +143,7 @@ baseline_GN['n_features'] = n_featuresGN
feature_gp_nameSTR = 'structural'
n_featuresSTR = len(X_structural_FN)
scores_mmSTR = MultModelsCl_dissected(input_df = X[X_structural_FN]
scores_mmSTR = MultModelsCl(input_df = X[X_structural_FN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
@ -187,7 +187,7 @@ baseline_STR['n_features'] = n_featuresSTR
feature_gp_nameSTB = 'stability'
n_featuresSTB = len(X_stability_FN)
scores_mmSTB = MultModelsCl_dissected(input_df = X[X_stability_FN]
scores_mmSTB = MultModelsCl(input_df = X[X_stability_FN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
@ -231,7 +231,7 @@ baseline_STB['n_features'] = n_featuresSTB
feature_gp_nameAFF = 'affinity'
n_featuresAFF = len(X_affinityFN)
scores_mmAFF = MultModelsCl_dissected(input_df = X[X_affinityFN]
scores_mmAFF = MultModelsCl(input_df = X[X_affinityFN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
@ -275,7 +275,7 @@ baseline_AFF['n_features'] = n_featuresAFF
feature_gp_nameRES = 'residue_prop'
n_featuresRES = len(X_resprop_FN)
scores_mmRES = MultModelsCl_dissected(input_df = X[X_resprop_FN]
scores_mmRES = MultModelsCl(input_df = X[X_resprop_FN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
@ -321,7 +321,7 @@ X_respropNOaaFN = list(set(X_resprop_FN) - set(X_aaindex_Fnum))
feature_gp_nameRNAA = 'ResPropNoAA'
n_featuresRNAA = len(X_respropNOaaFN)
scores_mmRNAA = MultModelsCl_dissected(input_df = X[X_respropNOaaFN]
scores_mmRNAA = MultModelsCl(input_df = X[X_respropNOaaFN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
@ -367,7 +367,7 @@ X_strNOaaFN = list(set(X_structural_FN) - set(X_aaindex_Fnum))
feature_gp_nameSNAA = 'StrNoAA'
n_featuresSNAA = len(X_strNOaaFN)
scores_mmSNAA = MultModelsCl_dissected(input_df = X[X_strNOaaFN]
scores_mmSNAA = MultModelsCl(input_df = X[X_strNOaaFN]
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv

View file

@ -34,6 +34,8 @@ def setvars(gene,drug):
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline
import argparse
import re
#%% GLOBALS
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
@ -422,118 +424,31 @@ def setvars(gene,drug):
#==========================
my_df_ml = my_df.copy()
#%% Build X: input for ML
common_cols_stabiltyN = ['ligand_distance'
, 'ligand_affinity_change'
, 'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'mmcsm_lig'
, 'contacts']
# Build stability columns ~ gene
# Build column names to mask for affinity chanhes
if gene.lower() in geneL_basic:
X_stabilityN = common_cols_stabiltyN
#X_stabilityN = common_cols_stabiltyN
gene_affinity_colnames = []# not needed as its the common ones
cols_to_mask = ['ligand_affinity_change']
if gene.lower() in geneL_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity' , 'interface_dist']
geneL_ppi2_st_cols = ['mcsm_ppi2_affinity', 'interface_dist']
X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
gene_affinity_colnames = ['mcsm_ppi2_affinity', 'interface_dist']
#X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
if gene.lower() in geneL_na:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity']
geneL_na_st_cols = ['mcsm_na_affinity']
X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
gene_affinity_colnames = ['mcsm_na_affinity']
#X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
if gene.lower() in geneL_na_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
geneL_na_ppi2_st_cols = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
gene_affinity_colnames = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
#X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
]
X_str = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
X_ssFN = X_stabilityN + X_str + X_foldX_cols
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
X_genomic_mafor = ['maf'
, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_genomic_linegae = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
X_genomicFN = X_genomic_mafor + X_genomic_linegae
X_aaindexFN = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindexFN))
# numerical feature names
numerical_FN = X_ssFN + X_evolFN + X_genomicFN + X_aaindexFN
# categorical feature names
categorical_FN = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
, 'active_site' #[didn't use it for uq_v1]
#, 'gene_name' # will be required for the combined stuff
]
#----------------------------------------------
# count numerical and categorical features
#----------------------------------------------
print('\nNo. of numerical features:', len(numerical_FN)
, '\nNo. of categorical features:', len(categorical_FN))
#=======================
# Masking columns:
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
#=======================
# my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
# my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
# my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
# (my_df_ml['ligand_affinity_change'] == 0).sum()
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
@ -544,23 +459,149 @@ def setvars(gene,drug):
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
#===================================================
# write file for check
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
#===================================================
###############################################################################
#%% Feature groups (FG): Build X for Input ML
############################################################################
#===========================
# FG1: Evolutionary features
#===========================
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
#####################################################################
###############################################################################
#========================
# FG2: Stability features
#========================
#--------
# common
#--------
X_common_stability_Fnum = [
'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'contacts']
#--------
# FoldX
#--------
X_foldX_Fnum = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss']
X_stability_FN = X_common_stability_Fnum + X_foldX_Fnum
###############################################################################
#===================
# FG3: Affinity features
#===================
common_affinity_Fnum = ['ligand_distance'
, 'ligand_affinity_change'
, 'mmcsm_lig']
# if gene.lower() in geneL_basic:
# X_affinityFN = common_affinity_Fnum
# else:
# X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
###############################################################################
#============================
# FG4: Residue level features
#============================
#-----------
# AA index
#-----------
X_aaindex_Fnum = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindex_Fnum))
#-----------------
# surface area
# depth
# hydrophobicity
#-----------------
X_str_Fnum = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
#---------------------------
# Other aa properties
# active site indication
#---------------------------
X_aap_Fcat = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'active_site']
X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
###############################################################################
#========================
# FG5: Genomic features
#========================
X_gn_mafor_Fnum = ['maf'
, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_gn_linegae_Fnum = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
X_gn_Fcat = ['drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
#, 'gene_name' # will be required for the combined stuff
]
X_genomicFN = X_gn_mafor_Fnum + X_gn_linegae_Fnum + X_gn_Fcat
###############################################################################
#========================
# FG6 collapsed: Structural : Atability + Affinity + ResidueProp
#========================
X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
###############################################################################
#========================
# BUILDING all features
#========================
all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
###############################################################################
#%% Define training and test data
#================================================================
# Training and BLIND test set: 70/30
# Throw away previous blind_test_df, and call the 30% data as blind_test
# as these were imputed values and initial analysis shows that this
# is not very representative
# dst with actual values : training set
# dst with imputed values : THROW AWAY [unrepresentative]
#================================================================
my_df_ml[drug].isna().sum()
# blind_test_df = my_df_ml[my_df_ml[drug].isna()]
# blind_test_df.shape
training_df = my_df_ml[my_df_ml[drug].notna()]
training_df = my_df_ml[my_df_ml[drug].notna()]
training_df.shape
# Target 1: dst_mode
@ -568,80 +609,14 @@ def setvars(gene,drug):
training_df['dst_mode'].value_counts()
####################################################################
###############################################################################
###############################################################################
# #%% extracting dfs based on numerical, categorical column names
# #----------------------------------
# # WITHOUT the target var included
# #----------------------------------
# num_df = training_df[numerical_FN]
# num_df.shape
# cat_df = training_df[categorical_FN]
# cat_df.shape
# all_df = training_df[numerical_FN + categorical_FN]
# all_df.shape
# #------------------------------
# # WITH the target var included:
# #'wtgt': with target
# #------------------------------
# # drug and dst_mode should be the same thing
# num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
# num_df_wtgt.shape
# cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
# cat_df_wtgt.shape
# all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
# all_df_wtgt.shape
#%%########################################################################
# #============
# # ML data: OLD
# #============
# #------
# # X: Training and Blind test (BTS)
# #------
# X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL
# X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL
# #X = all_df_wtgt[numerical_FN] # training numerical only
# #X_bts = blind_test_df[numerical_FN] # blind test data numerical
# #------
# # y
# #------
# y = all_df_wtgt['dst_mode'] # training data y
# y_bts = blind_test_df['dst_mode'] # blind data test y
# #X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
# # Quick check
# #(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
# for i in range(len(cols_to_mask)):
# ind = i+1
# print('\nindex:', i, '\nind:', ind)
# print('\nMask count check:'
# , (my_df_ml[cols_to_mask[i]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
# )
# print('Original Data\n', Counter(y)
# , 'Data dim:', X.shape)
###############################################################################
###############################################################################
#====================================
# ML data: Train test split: 70/30
# with stratification
# 70% : training_data for CV
# 30% : blind test
#=====================================
# features: all_df or
x_features = training_df[numerical_FN + categorical_FN]
y_target = training_df['dst_mode']
x_features = training_df[all_featuresN]
y_target = training_df['dst_mode']
# sanity check
if not 'dst_mode' in x_features.columns:
@ -652,7 +627,9 @@ def setvars(gene,drug):
#https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d
else:
sys.exit('\nFAIL: x_features has target variable included. FIX it and rerun!')
#-------------------
# train-test split
#-------------------
#x_train, x_test, y_train, y_test # traditional var_names
# so my downstream code doesn't need to change
X, X_bts, y, y_bts = train_test_split(x_features, y_target
@ -665,15 +642,63 @@ def setvars(gene,drug):
yc2 = Counter(y_bts)
yc2_ratio = yc2[0]/yc2[1]
###############################################################################
#======================================================
# Determine categorical and numerical features
#======================================================
numerical_cols = X.select_dtypes(include=['int64', 'float64']).columns
numerical_cols
categorical_cols = X.select_dtypes(include=['object', 'bool']).columns
categorical_cols
################################################################################
# IMPORTANT sanity checks
if len(X.columns) == len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN):
print('\nPASS: ML data with input features, training and test generated...'
, '\n\nTotal no. of input features:' , len(X.columns)
, '\n--------No. of numerical features:' , len(numerical_cols)
, '\n--------No. of categorical features:' , len(categorical_cols)
, '\n\nTotal no. of evolutionary features:' , len(X_evolFN)
, '\n\nTotal no. of stability features:' , len(X_stability_FN)
, '\n--------Common stabilty cols:' , len(X_common_stability_Fnum)
, '\n--------Foldx cols:' , len(X_foldX_Fnum)
, '\n\nTotal no. of affinity features:' , len(X_affinityFN)
, '\n--------Common affinity cols:' , len(common_affinity_Fnum)
, '\n--------Gene specific affinity cols:' , len(gene_affinity_colnames)
, '\n\nTotal no. of residue level features:', len(X_resprop_FN)
, '\n--------AA index cols:' , len(X_aaindex_Fnum)
, '\n--------Residue Prop cols:' , len(X_str_Fnum)
, '\n--------AA change Prop cols:' , len(X_aap_Fcat)
, '\n\nTotal no. of genomic features:' , len(X_genomicFN)
, '\n--------MAF+OR cols:' , len(X_gn_mafor_Fnum)
, '\n--------Lineage cols:' , len(X_gn_linegae_Fnum)
, '\n--------Other cols:' , len(X_gn_Fcat)
)
else:
print('\nFAIL: numbers mismatch'
, '\nExpected:',len(X_evolFN) + len(X_stability_FN) + len(X_affinityFN) + len(X_resprop_FN) + len(X_genomicFN)
, '\nGot:', len(X.columns))
sys.exit()
###############################################################################
print('\n-------------------------------------------------------------'
, '\nSuccessfully split data with stratification: 70/30'
, '\nInput features data size:', x_features.shape
, '\nTrain data size:', X.shape
, '\nTest data size:', X_bts.shape
, '\nSuccessfully split data: ALL features'
, '\nactual values: training set'
, '\nimputed values: blind test set'
, '\n\nTotal data size:', len(X) + len(X_bts)
, '\n\nTrain data size:', X.shape
, '\ny_train numbers:', yc1
, '\ny_train ratio:',yc1_ratio
, '\n'
, '\n\nTest data size:', X_bts.shape
, '\ny_test_numbers:', yc2
, '\n\ny_train ratio:',yc1_ratio
, '\ny_test ratio:', yc2_ratio
, '\n-------------------------------------------------------------'
)
@ -700,7 +725,7 @@ def setvars(gene,drug):
#------------------------------
oversample = RandomOverSampler(sampling_strategy='minority')
X_ros, y_ros = oversample.fit_resample(X, y)
print('\nSimple Random OverSampling\n', Counter(y_ros))
print('Simple Random OverSampling\n', Counter(y_ros))
print(X_ros.shape)
#------------------------------
@ -709,7 +734,7 @@ def setvars(gene,drug):
#------------------------------
undersample = RandomUnderSampler(sampling_strategy='majority')
X_rus, y_rus = undersample.fit_resample(X, y)
print('\nSimple Random UnderSampling\n', Counter(y_rus))
print('Simple Random UnderSampling\n', Counter(y_rus))
print(X_rus.shape)
#------------------------------
@ -720,7 +745,7 @@ def setvars(gene,drug):
X_ros, y_ros = oversample.fit_resample(X, y)
undersample = RandomUnderSampler(sampling_strategy='majority')
X_rouC, y_rouC = undersample.fit_resample(X_ros, y_ros)
print('\nSimple Combined Over and UnderSampling\n', Counter(y_rouC))
print('Simple Combined Over and UnderSampling\n', Counter(y_rouC))
print(X_rouC.shape)
#------------------------------
@ -740,7 +765,7 @@ def setvars(gene,drug):
categorical_colind = X.columns.get_indexer(list(categorical_ix))
categorical_colind
k_sm = 5 # 5 is default
k_sm = 5 # 5 is deafult
sm_nc = SMOTENC(categorical_features=categorical_colind, k_neighbors = k_sm, **rs, **njobs)
X_smnc, y_smnc = sm_nc.fit_resample(X, y)
print('\nSMOTE_NC OverSampling\n', Counter(y_smnc))

View file

@ -61,7 +61,6 @@ def setvars(gene,drug):
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
#%% FOR LATER: Combine ED logo data
#%% DONE: active aa site annotations **DONE on 15/05/2022 as part of generating merged_dfs
###########################################################################
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
@ -419,7 +418,7 @@ def setvars(gene,drug):
#---------------------------------------
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#%% Data for ML
#%%########################################################################
#==========================
# Data for ML
#==========================
@ -552,7 +551,6 @@ def setvars(gene,drug):
, 'water_change'
, 'active_site']
X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
###############################################################################
#========================
@ -594,8 +592,7 @@ def setvars(gene,drug):
###############################################################################
#%% Define training and test data
#======================================================
# Training and BLIND test set [UQ]: actual vs imputed
# No aa index but active_site included
# Training and BLIND test set: actual vs imputed
# dst with actual values : training set
# dst with imputed values : blind test
#======================================================
@ -612,9 +609,9 @@ def setvars(gene,drug):
training_df['dst_mode'].value_counts()
####################################################################
#============
# ML data
#============
#=====================================
# ML data: actual vs imputed
#=====================================
#------
# X: Training and Blind test (BTS)
#------
@ -627,18 +624,6 @@ def setvars(gene,drug):
y = training_df['dst_mode']
y_bts = blind_test_df['dst_mode']
# Quick check
#(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
for i in range(len(cols_to_mask)):
ind = i+1
print('\nindex:', i, '\nind:', ind)
print('\nMask count check:'
, (my_df_ml[cols_to_mask[i]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
)
print('Original Data\n', Counter(y)
, 'Data dim:', X.shape)
yc1 = Counter(y)
yc1_ratio = yc1[0]/yc1[1]
@ -705,7 +690,18 @@ def setvars(gene,drug):
, '\ny_test ratio:', yc2_ratio
, '\n-------------------------------------------------------------'
)
##########################################################################
# Quick check
#(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
for i in range(len(cols_to_mask)):
ind = i+1
print('\nindex:', i, '\nind:', ind)
print('\nMask count check:'
, (my_df_ml[cols_to_mask[i]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
)
print('Original Data\n', Counter(y)
, 'Data dim:', X.shape)
###########################################################################
#%%
###########################################################################
@ -760,7 +756,7 @@ def setvars(gene,drug):
k_sm = 5 # 5 is deafult
sm_nc = SMOTENC(categorical_features=categorical_colind, k_neighbors = k_sm, **rs, **njobs)
X_smnc, y_smnc = sm_nc.fit_resample(X, y)
print('SMOTE_NC OverSampling\n', Counter(y_smnc))
print('\nSMOTE_NC OverSampling\n', Counter(y_smnc))
print(X_smnc.shape)
globals().update(locals()) # TROLOLOLOLOLOLS
#print("i did a horrible hack :-)")
@ -774,7 +770,7 @@ def setvars(gene,drug):
# sm = SMOTE(sampling_strategy = 'auto', k_neighbors = k_sm, **rs)
# X_sm, y_sm = sm.fit_resample(X, y)
# print(X_sm.shape)
# print('SMOTE OverSampling\n', Counter(y_sm))
# print('\nSMOTE OverSampling\n', Counter(y_sm))
# y_sm_df = y_sm.to_frame()
# y_sm_df.value_counts().plot(kind = 'bar')
@ -785,7 +781,7 @@ def setvars(gene,drug):
# sm_enn = SMOTEENN(enn=EditedNearestNeighbours(sampling_strategy='all', **rs, **njobs ))
# X_enn, y_enn = sm_enn.fit_resample(X, y)
# print(X_enn.shape)
# print('SMOTE Over+Under Sampling combined\n', Counter(y_enn))
# print('\nSMOTE Over+Under Sampling combined\n', Counter(y_enn))
###############################################################################
# TODO: Find over and undersampling JUST for categorical data

499
scripts/ml/run_7030.py Normal file
View file

@ -0,0 +1,499 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 20 13:05:23 2022
@author: tanu
"""
import re
import argparse
###############################################################################
# gene = 'pncA'
# drug = 'pyrazinamide'
#total_mtblineage_uc = 8
#%% command line args: case sensitive
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = '')
arg_parser.add_argument('-g', '--gene', help = 'gene name', default = '')
args = arg_parser.parse_args()
drug = args.drug
gene = args.gene
###############################################################################
#==================
# other vars
#==================
tts_split = '70/30'
OutFile_suffix = '7030'
###############################################################################
#==================
# Import data
#==================
from ml_data_7030 import *
setvars(gene,drug)
from ml_data_7030 import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
#====================
# Import ML function
#====================
# TT run all ML clfs: baseline model
from MultModelsCl import MultModelsCl
############################################################################
print('\n#####################################################################\n'
, '\nRunning ML analysis: feature groups '
, '\nGene name:', gene
, '\nDrug name:', drug)
#==================
# Specify outdir
#==================
outdir_ml = outdir + 'ml/tts_7030/'
print('\nOutput directory:', outdir_ml)
outFile = outdir_ml + gene.lower() + '_baselineC_' + OutFile_suffix + '.csv'
###############################################################################
score_type_ordermapD = { 'mcc' : 1
, 'fscore' : 2
, 'jcc' : 3
, 'precision' : 4
, 'recall' : 5
, 'accuracy' : 6
, 'roc_auc' : 7
, 'TN' : 8
, 'FP' : 9
, 'FN' : 10
, 'TP' : 11
, 'trainingY_neg': 12
, 'trainingY_pos': 13
, 'blindY_neg' : 14
, 'blindY_pos' : 15
, 'fit_time' : 16
, 'score_time' : 17
}
# data dependent variable
bts_size = len(X_bts)
###############################################################################
#%% TTS: 7030 split
# mm_skf_scoresD = MultModelsCl(input_df = X
# , target = y
# , var_type = 'mixed'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# baseline_all = pd.DataFrame(mm_skf_scoresD)
# baseline_all = baseline_all.T
# #baseline_train = baseline_all.filter(like='train_', axis=1)
# baseline_CT = baseline_all.filter(like='test_', axis=1)
# baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# baseline_BT = baseline_all.filter(like='bts_', axis=1)
# baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# # Write csv
# baseline_CT.to_csv(outdir_ml + gene.lower() + '_baseline_CT_allF.csv')
# baseline_BT.to_csv(outdir_ml + gene.lower() + '_baseline_BT_allF.csv')
#================
# Baseline
# No resampling
#================
# other data dependent variables
training_size_ns = len(X)
n_features = len(X.columns)
scores_mmD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
baseline_all_scores = pd.DataFrame(scores_mmD)
baseline_all = baseline_all_scores.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
baseline_all = baseline_all.reset_index()
baseline_all.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
baseline_all['data_source'] = baseline_all.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
baseline_all['score_type'] = baseline_all['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(baseline_all['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
baseline_all['score_order'] = baseline_all['score_type'].map(score_type_ordermapD)
baseline_all.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
# add cols: specific
baseline_all['resampling'] = 'none'
baseline_all['training_size'] = training_size_ns
# add cols: common
baseline_all['n_features'] = n_features
#baseline_all['test_size'] = bts_size
#baseline_all['tts_split'] = tts_split
###############################################################################
#%% SMOTE NC: Oversampling [Numerical + categorical]
# mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
# , target = y_smnc
# , var_type = 'mixed'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# smnc_all = pd.DataFrame(mm_skf_scoresD7)
# smnc_all = smnc_all.T
# smnc_CT = smnc_all.filter(like='test_', axis=1)
# smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# smnc_BT = smnc_all.filter(like='bts_', axis=1)
# smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# # Write csv
# smnc_CT.to_csv(outdir_ml + gene.lower() + '_smnc_CT_allF.csv')
# smnc_BT.to_csv(outdir_ml + gene.lower() + '_smnc_BT_allF.csv')
#================
# Baselone
# SMOTE NC
#================
# other data dependent variables
training_size_smnc = len(X_smnc)
n_features = len(X_smnc.columns)
smnc_scores_mmD = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
smnc_all_scores = pd.DataFrame(smnc_scores_mmD)
smnc_all = smnc_all_scores.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
smnc_all = smnc_all.reset_index()
smnc_all.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
smnc_all['data_source'] = smnc_all.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
smnc_all['score_type'] = smnc_all['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(smnc_all['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
smnc_all['score_order'] = smnc_all['score_type'].map(score_type_ordermapD)
smnc_all.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
# add cols: specific
smnc_all['resampling'] = 'smnc'
smnc_all['training_size'] = training_size_smnc
# add cols: common
smnc_all['n_features'] = n_features
#smnc_all['test_size'] = bts_size
#smnc_all['tts_split'] = tts_split
###############################################################################
#%% ROS: Numerical + categorical
# mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
# , target = y_ros
# , var_type = 'mixed'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# ros_all = pd.DataFrame(mm_skf_scoresD3)
# ros_all = ros_all.T
# ros_CT = ros_all.filter(like='test_', axis=1)
# ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# ros_BT = ros_all.filter(like='bts_', axis=1)
# ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# # Write csv
# ros_CT.to_csv(outdir_ml + gene.lower() + '_ros_CT_allF.csv')
# ros_BT.to_csv(outdir_ml + gene.lower() + '_ros_BT_allF.csv')
#================
# Baseline
# ROS
#================
# other data dependent variables
training_size_ros = len(X_ros)
n_features = len(X_ros.columns)
ros_scores_mmD = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
ros_all_scores = pd.DataFrame(ros_scores_mmD)
ros_all = ros_all_scores.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
ros_all = ros_all.reset_index()
ros_all.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
ros_all['data_source'] = ros_all.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
ros_all['score_type'] = ros_all['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(ros_all['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
ros_all['score_order'] = ros_all['score_type'].map(score_type_ordermapD)
ros_all.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
# add cols: specific
ros_all['resampling'] = 'ros'
ros_all['training_size'] = training_size_ros
# add cols: common
ros_all['n_features'] = n_features
#ros_all['test_size'] = bts_size
#ros_all['tts_split'] = tts_split
###############################################################################
#%% RUS: Numerical + categorical
# mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
# , target = y_rus
# , var_type = 'mixed'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# rus_all = pd.DataFrame(mm_skf_scoresD4)
# rus_all = rus_all.T
# rus_CT = rus_all.filter(like='test_', axis=1)
# rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# rus_BT = rus_all.filter(like='bts_' , axis=1)
# rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# # Write csv
# rus_CT.to_csv(outdir_ml + gene.lower() + '_rus_CT_allF.csv')
# rus_BT.to_csv(outdir_ml + gene.lower() + '_rus_BT_allF.csv')
#================
# Baseline
# RUS
#================
# other data dependent variables
training_size_rus = len(X_rus)
n_features = len(X_rus.columns)
rus_scores_mmD = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
rus_all_scores = pd.DataFrame(rus_scores_mmD)
rus_all = rus_all_scores.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
rus_all = rus_all.reset_index()
rus_all.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
rus_all['data_source'] = rus_all.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
rus_all['score_type'] = rus_all['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(rus_all['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
rus_all['score_order'] = rus_all['score_type'].map(score_type_ordermapD)
rus_all.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
# add cols: specific
rus_all['resampling'] = 'rus'
rus_all['training_size'] = training_size_rus
# add cols: common
rus_all['n_features'] = n_features
#rus_all['test_size'] = bts_size
#rus_all['tts_split'] = tts_split
###############################################################################
#%% ROS + RUS Combined: Numerical + categorical
# mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
# , target = y_rouC
# , var_type = 'mixed'
# , skf_cv = skf_cv
# , blind_test_input_df = X_bts
# , blind_test_target = y_bts)
# rouC_all = pd.DataFrame(mm_skf_scoresD8)
# rouC_all = rouC_all.T
# rouC_CT = rouC_all.filter(like='test_', axis=1)
# rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
# rouC_BT = rouC_all.filter(like='bts_', axis=1)
# rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# # Write csv
# rouC_CT.to_csv(outdir_ml + gene.lower() + '_rouC_CT_allF.csv')
# rouC_BT.to_csv(outdir_ml + gene.lower() + '_rouC_BT_allF.csv')
#================
# Baseline
# ROUC
#================
# other data dependent variables
training_size_rouC = len(X_rouC)
n_features = len(X_rouC.columns)
rouC_scores_mmD = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
rouC_all_scores = pd.DataFrame(rouC_scores_mmD)
rouC_all = rouC_all_scores.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
rouC_all = rouC_all.reset_index()
rouC_all.rename(columns = {'index': 'original_names'}, inplace = True)
# Indicate whether BT or CT
bt_pattern = re.compile(r'bts_.*')
rouC_all['data_source'] = rouC_all.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
rouC_all['score_type'] = rouC_all['original_names'].str.replace('bts_|test_', '', regex = True)
score_type_uniqueN = set(rouC_all['score_type'])
cL1 = list(score_type_ordermapD.keys())
cL2 = list(score_type_uniqueN)
if set(cL1).issubset(cL2):
print('\nPASS: sorting df by score that is mapped onto the order I want')
rouC_all['score_order'] = rouC_all['score_type'].map(score_type_ordermapD)
rouC_all.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
else:
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
# add cols: specific
rouC_all['resampling'] = 'rouC'
rouC_all['training_size'] = training_size_rouC
# add cols: common
rouC_all['n_features'] = n_features
#rouC_all['test_size'] = bts_size
#rouC_all['tts_split'] = tts_split
###############################################################################
#%% COMBINING all FG dfs
#================
# Combine all
# https://stackoverflow.com/questions/39862654/pandas-concat-of-multiple-data-frames-using-only-common-columns
#================
dfs_combine = [baseline_all, smnc_all, ros_all, rus_all, rouC_all ]
dfs_nrows = []
for df in dfs_combine:
dfs_nrows = dfs_nrows + [len(df)]
dfs_nrows = max(dfs_nrows)
dfs_ncols = []
for df in dfs_combine:
dfs_ncols = dfs_ncols + [len(df.columns)]
dfs_ncols = max(dfs_ncols)
# dfs_ncols = []
# dfs_ncols2 = mode(dfs_ncols.append(len(df.columns) for df in dfs_combine)
# dfs_ncols2
expected_nrows = len(dfs_combine) * dfs_nrows
expected_ncols = dfs_ncols
common_cols = list(set.intersection(*(set(df.columns) for df in dfs_combine)))
if len(common_cols) == dfs_ncols :
combined_baseline = pd.concat([df[common_cols] for df in dfs_combine], ignore_index=True)
resampling_methods = combined_baseline[['resampling', 'training_size']]
resampling_methods = resampling_methods.drop_duplicates()
print('\nConcatenating dfs with different resampling methods:', tts_split
, '\nNo. of dfs combining:', len(dfs_combine)
, '\nThe sampling methods are:'
, '\n', resampling_methods)
if len(combined_baseline) == expected_nrows and len(combined_baseline.columns) == expected_ncols:
print('\nPASS:', len(dfs_combine), 'dfs successfully combined'
, '\nnrows in combined_df:', len(combined_baseline)
, '\nncols in combined_df:', len(combined_baseline.columns))
else:
print('\nFAIL: concatenating failed'
, '\nExpected nrows:', expected_nrows
, '\nGot:', len(combined_baseline)
, '\nExpected ncols:', expected_ncols
, '\nGot:', len(combined_baseline.columns))
sys.exit()
else:
sys.exit('\nConcatenting dfs not possible,check numbers ')
# Add further column indications
combined_baseline['test_size'] = bts_size
combined_baseline['tts_split'] = tts_split
# TODO:
# ADD y target ration for all
# # rpow bind
# if all(ll((baseline_all.columns == baseline_GN.columns == baseline_STR.columns)):
# print('\nPASS:colnames match, proceeding to rowbind')
# comb_df = pd.concat()], axis = 0, ignore_index = True ) combined_baseline
###############################################################################
#====================
# Write output file
#====================
combined_baseline.to_csv(outFile, index = False)
print('\nFile successfully written:', outFile)
###############################################################################

View file

@ -30,9 +30,9 @@ os.chdir( homedir + '/git/LSHTM_analysis/scripts/ml/')
#==================
# Import data
#==================
from ml_data_dissected import *
from ml_data_fg import *
setvars(gene,drug)
from ml_data_dissected import *
from ml_data_fg import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
@ -60,7 +60,7 @@ outFile = outdir_ml + gene.lower() + '_baseline_FG.csv'
#==================
# other vars
#==================
tts_split_name = 'original'
tts_split = 'original'
resampling = 'none'
###############################################################################
@ -177,7 +177,7 @@ else:
baseline_EV['feature_group'] = feature_gp_nameEV
baseline_EV['resampling'] = resampling
baseline_EV['tts_split'] = tts_split_name
baseline_EV['tts_split'] = tts_split
baseline_EV['n_features'] = n_featuresEV
###############################################################################
#================
@ -221,7 +221,7 @@ else:
baseline_GN['feature_group'] = feature_gp_nameGN
baseline_GN['resampling'] = resampling
baseline_GN['tts_split'] = tts_split_name
baseline_GN['tts_split'] = tts_split
baseline_GN['n_features'] = n_featuresGN
###############################################################################
#all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
@ -268,7 +268,7 @@ else:
baseline_STR['feature_group'] = feature_gp_nameSTR
baseline_STR['resampling'] = resampling
baseline_STR['tts_split'] = tts_split_name
baseline_STR['tts_split'] = tts_split
baseline_STR['n_features'] = n_featuresSTR
##############################################################################
#================
@ -312,7 +312,7 @@ else:
baseline_STB['feature_group'] = feature_gp_nameSTB
baseline_STB['resampling'] = resampling
baseline_STB['tts_split'] = tts_split_name
baseline_STB['tts_split'] = tts_split
baseline_STB['n_features'] = n_featuresSTB
###############################################################################
#================
@ -356,7 +356,7 @@ else:
baseline_AFF['feature_group'] = feature_gp_nameAFF
baseline_AFF['resampling'] = resampling
baseline_AFF['tts_split'] = tts_split_name
baseline_AFF['tts_split'] = tts_split
baseline_AFF['n_features'] = n_featuresAFF
###############################################################################
#================
@ -400,7 +400,7 @@ else:
baseline_RES['feature_group'] = feature_gp_nameRES
baseline_RES['resampling'] = resampling
baseline_RES['tts_split'] = tts_split_name
baseline_RES['tts_split'] = tts_split
baseline_RES['n_features'] = n_featuresRES
###############################################################################
#================
@ -446,7 +446,7 @@ else:
baseline_RNAA['feature_group'] = feature_gp_nameRNAA
baseline_RNAA['resampling'] = resampling
baseline_RNAA['tts_split'] = tts_split_name
baseline_RNAA['tts_split'] = tts_split
baseline_RNAA['n_features'] = n_featuresRNAA
###############################################################################
#================
@ -492,7 +492,7 @@ else:
baseline_SNAA['feature_group'] = feature_gp_nameSNAA
baseline_SNAA['resampling'] = resampling
baseline_SNAA['tts_split'] = tts_split_name
baseline_SNAA['tts_split'] = tts_split
baseline_SNAA['n_features'] = n_featuresSNAA
###############################################################################
#%% COMBINING all FG dfs
@ -525,7 +525,7 @@ if len(common_cols) == dfs_ncols :
combined_FG_baseline = pd.concat([df[common_cols] for df in dfs_combine], ignore_index=True)
fgs = combined_FG_baseline[['feature_group', 'n_features']]
fgs = fgs.drop_duplicates()
print('\nConcatenating dfs with feature groups after ML analysis (sampling type):'
print('\nConcatenating dfs with feature groups after ML analysis:'
, '\nNo. of dfs combining:', len(dfs_combine)
, '\nSampling type:', resampling
, '\nThe feature groups are:'