add wrapper and mcsm library
This commit is contained in:
parent
23c2ddf45f
commit
bc03aab82d
6 changed files with 558 additions and 678 deletions
212
mcsm/run_mcsm.py
212
mcsm/run_mcsm.py
|
@ -1,212 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
#=======================================================================
|
||||
#TASK:
|
||||
#=======================================================================
|
||||
#%% load packages
|
||||
import os,sys
|
||||
import subprocess
|
||||
import argparse
|
||||
import requests
|
||||
import re
|
||||
import time
|
||||
import pandas as pd
|
||||
from bs4 import BeautifulSoup
|
||||
from csv import reader
|
||||
#=======================================================================
|
||||
#%% specify input and curr dir
|
||||
homedir = os.path.expanduser('~')
|
||||
# set working dir
|
||||
os.getcwd()
|
||||
os.chdir(homedir + '/git/LSHTM_analysis/mcsm')
|
||||
os.getcwd()
|
||||
#=======================================================================
|
||||
#%% command line args
|
||||
#arg_parser = argparse.ArgumentParser()
|
||||
#arg_parser.add_argument('-d', '--drug', help='drug name', default = 'pyrazinamide')
|
||||
#arg_parser.add_argument('-g', '--gene', help='gene name', default = 'pncA') # case sensitive
|
||||
#arg_parser.add_argument('-d', '--drug', help='drug name', default = 'TESTDRUG')
|
||||
#arg_parser.add_argument('-g', '--gene', help='gene name (case sensitive)', default = 'testGene') # case sensitive
|
||||
#args = arg_parser.parse_args()
|
||||
#=======================================================================
|
||||
#%% variable assignment: input and output
|
||||
#drug = 'pyrazinamide'
|
||||
#gene = 'pncA'
|
||||
|
||||
drug = 'isoniazid'
|
||||
gene = 'KatG'
|
||||
|
||||
#drug = args.drug
|
||||
#gene = args.gene
|
||||
|
||||
gene_match = gene + '_p.'
|
||||
#==========
|
||||
# data dir
|
||||
#==========
|
||||
datadir = homedir + '/' + 'git/Data'
|
||||
|
||||
#=======
|
||||
# input:
|
||||
#=======
|
||||
# 1) pdb file
|
||||
indir = datadir + '/' + drug + '/' + 'input'
|
||||
in_filename_pdb = gene.lower() + '_complex.pdb'
|
||||
infile_snps_pdb = indir + '/' + in_filename_pdb
|
||||
print('Input filename:', in_filename_pdb
|
||||
, '\nInput path(from output dir):', indir
|
||||
, '\n=============================================================')
|
||||
|
||||
# 2) mcsm snps
|
||||
outdir = datadir + '/' + drug + '/' + 'output'
|
||||
in_filename_snps = gene.lower() + '_mcsm_snps_test.csv' #(outfile2, from data_extraction.py)
|
||||
infile_snps = outdir + '/' + in_filename_snps
|
||||
print('Input filename:', in_filename_snps
|
||||
, '\nInput path(from output dir):', outdir
|
||||
, '\n=============================================================')
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
#outdir = datadir + '/' + drug + '/' + 'output'
|
||||
out_filename = gene.lower() + '_result_urls.txt'
|
||||
outfile = outdir + '/' + out_filename
|
||||
print('Output filename:', out_filename
|
||||
, '\nOutput path:', outdir
|
||||
, '\n=============================================================')
|
||||
|
||||
#%% global variables
|
||||
host = "http://biosig.unimelb.edu.au"
|
||||
prediction_url = f"{host}/mcsm_lig/prediction"
|
||||
#=======================================================================
|
||||
#%%
|
||||
def format_data(data_file):
|
||||
"""
|
||||
Read file containing SNPs for mcsm analysis. This is mainly for
|
||||
sanity check. Assumption is that the input file will have no duplicates.
|
||||
#FIXME: perhaps, check if duplicates and write file/pass file
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@param data_file csv file containing nsSNPs for given drug and gene.
|
||||
csv file format:
|
||||
single column with no headers with nsSNP format as below:
|
||||
A1B
|
||||
B2C
|
||||
@type data_file: string
|
||||
|
||||
Returns
|
||||
----------
|
||||
@return unique SNPs (after removing duplicates)
|
||||
"""
|
||||
data = pd.read_csv(data_file, header = None)
|
||||
data = data.drop_duplicates()
|
||||
# print(data.head())
|
||||
return data
|
||||
|
||||
def request_calculation(pdb_file, mutation, chain, ligand_id, affinity):
|
||||
"""
|
||||
Makes a POST request for a ligand affinity prediction.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@param pdb_file: valid path to pdb structure
|
||||
@type string
|
||||
|
||||
@param mutation: single mutation of the format: {WT}<POS>{Mut}
|
||||
@type string
|
||||
|
||||
@param chain: single-letter(caps)
|
||||
@type chr
|
||||
|
||||
@param wt affinity: in nM
|
||||
@type number
|
||||
|
||||
@param lig_id: 3-letter code (should match pdb file)
|
||||
@type string
|
||||
|
||||
Returns
|
||||
----------
|
||||
@return response object
|
||||
@type object
|
||||
"""
|
||||
with open(pdb_file, "rb") as pdb_file:
|
||||
files = {"wild": pdb_file}
|
||||
body = {
|
||||
"mutation": mutation,
|
||||
"chain": chain,
|
||||
"lig_id": ligand_id,
|
||||
"affin_wt": affinity
|
||||
}
|
||||
|
||||
response = requests.post(prediction_url, files = files, data = body)
|
||||
response.raise_for_status()
|
||||
|
||||
return response
|
||||
|
||||
def write_result_url(holding_page, out_result_url):
|
||||
"""
|
||||
Extract and write results url from the holding page returned after
|
||||
requesting a calculation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@param holding_page: response object containinig html content
|
||||
@type FIXME text
|
||||
|
||||
Returns
|
||||
----------
|
||||
@return None, writes a file containing result urls (= total no. of muts)
|
||||
"""
|
||||
url_match = re.search('/mcsm_lig/results_prediction/.+(?=")', holding_page.text)
|
||||
url = host + url_match.group()
|
||||
|
||||
#===============
|
||||
# writing file
|
||||
#===============
|
||||
# myfile = open('/tmp/result_urls', 'a')
|
||||
myfile = open(out_result_url, 'a')
|
||||
myfile.write(url+'\n')
|
||||
myfile.close()
|
||||
print(myfile)
|
||||
# return url
|
||||
#=======================================================================
|
||||
#%% call functions
|
||||
mcsm_muts = format_data(infile_snps)
|
||||
# sanity check to make sure your input file has no duplicate muts
|
||||
if len(pd.read_csv(infile_snps, header = None)) == len(format_data(infile_snps)):
|
||||
print('PASS: input mutation file has no duplicate mutations')
|
||||
else:
|
||||
print('FAIL: Duplicate mutations detected in input mut file'
|
||||
, '\nExpected no. of rows:', len(format_data(infile_snps))
|
||||
,'\nGot no. of rows:', len(pd.read_csv(infile_snps, header = None)))
|
||||
|
||||
# variables to run mcsm lig predictions
|
||||
pdb_file = infile_snps_pdb
|
||||
my_chain = 'A'
|
||||
my_ligand_id = 'INH'
|
||||
my_affinity = 10
|
||||
|
||||
# variable for outfile that writes the results urls from mcsm_lig
|
||||
print('Result urls will be written in:', out_filename
|
||||
, '\nPath:', outdir)
|
||||
|
||||
mut_count = 1 # HURR DURR COUNT STARTEDS AT ONE1`!1
|
||||
infile_snps_len = os.popen('wc -l < %s' % infile_snps).read() # quicker than using Python :-)
|
||||
print('Total SNPs for', gene, ':', infile_snps_len)
|
||||
|
||||
with open(infile_snps,'r') as fh:
|
||||
for mcsm_mut in fh:
|
||||
mcsm_mut = mcsm_mut.rstrip()
|
||||
print('Processing mcsm mut:', mcsm_mut)
|
||||
print('Parameters for mcsm_lig:', in_filename_pdb, mcsm_mut, my_chain, my_ligand_id, my_affinity)
|
||||
|
||||
holding_page = request_calculation(pdb_file, mcsm_mut, my_chain, my_ligand_id, my_affinity)
|
||||
time.sleep(1)
|
||||
print('Processing mutation: %s of %s' % (mut_count, infile_snps_len))
|
||||
mut_count += 1
|
||||
result_url = write_result_url(holding_page, outfile)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue