added dir scratch_plots/ to practice extra plots
This commit is contained in:
parent
0f6bf3875d
commit
ba02107e23
1 changed files with 274 additions and 0 deletions
274
scripts/plotting/scratch_plots/lineage_dist_combined_PS_style.R
Normal file
274
scripts/plotting/scratch_plots/lineage_dist_combined_PS_style.R
Normal file
|
@ -0,0 +1,274 @@
|
|||
#!/usr/bin/env Rscript
|
||||
#########################################################
|
||||
# TASK: Lineage dist plots: ggridges
|
||||
|
||||
# Output: 2 SVGs for PS stability
|
||||
|
||||
# 1) all muts
|
||||
# 2) dr_muts
|
||||
|
||||
##########################################################
|
||||
# Installing and loading required packages
|
||||
##########################################################
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting/")
|
||||
getwd()
|
||||
|
||||
source("Header_TT.R")
|
||||
library(ggridges)
|
||||
source("combining_dfs_plotting.R")
|
||||
# PS combined:
|
||||
# 1) merged_df2
|
||||
# 2) merged_df2_comp
|
||||
# 3) merged_df3
|
||||
# 4) merged_df3_comp
|
||||
|
||||
# LIG combined:
|
||||
# 5) merged_df2_lig
|
||||
# 6) merged_df2_comp_lig
|
||||
# 7) merged_df3_lig
|
||||
# 8) merged_df3_comp_lig
|
||||
|
||||
# 9) my_df_u
|
||||
# 10) my_df_u_lig
|
||||
|
||||
cat("Directories imported:"
|
||||
, "\n===================="
|
||||
, "\ndatadir:", datadir
|
||||
, "\nindir:", indir
|
||||
, "\noutdir:", outdir
|
||||
, "\nplotdir:", plotdir)
|
||||
|
||||
cat("Variables imported:"
|
||||
, "\n====================="
|
||||
, "\ndrug:", drug
|
||||
, "\ngene:", gene
|
||||
, "\ngene_match:", gene_match
|
||||
, "\nAngstrom symbol:", angstroms_symbol
|
||||
, "\nNo. of duplicated muts:", dup_muts_nu
|
||||
, "\nNA count for ORs:", na_count
|
||||
, "\nNA count in df2:", na_count_df2
|
||||
, "\nNA count in df3:", na_count_df3
|
||||
, "\ndr_muts_col:", dr_muts_col
|
||||
, "\nother_muts_col:", other_muts_col
|
||||
, "\ndrtype_col:", resistance_col)
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
#lineage_dist_dm_om = "lineage_dist_dm_om_PS.svg"
|
||||
#plot_lineage_dist_dm_om = paste0(plotdir,"/", lineage_dist_dm_om)
|
||||
#========================================================================
|
||||
|
||||
###########################
|
||||
# Data for plots
|
||||
# you need merged_df2 or merged_df2_comp
|
||||
# since this is one-many relationship
|
||||
# i.e the same SNP can belong to multiple lineages
|
||||
# using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available, hence use df with NA
|
||||
###########################
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df2
|
||||
|
||||
# delete variables not required
|
||||
rm(my_df_u, merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
is.factor(my_df$lineage)
|
||||
my_df$lineage = as.factor(my_df$lineage)
|
||||
is.factor(my_df$lineage)
|
||||
|
||||
table(my_df$mutation_info)
|
||||
|
||||
#===================
|
||||
# Data for plots
|
||||
#===================
|
||||
table(my_df$lineage); str(my_df$lineage)
|
||||
|
||||
# select lineages 1-4
|
||||
sel_lineages = c("lineage1"
|
||||
, "lineage2"
|
||||
, "lineage3"
|
||||
, "lineage4"
|
||||
#, "lineage5"
|
||||
#, "lineage6"
|
||||
#, "lineage7"
|
||||
)
|
||||
|
||||
|
||||
my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4'
|
||||
#, 'Lineage 5', 'Lineage 6', 'Lineage 7'
|
||||
)
|
||||
names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4'
|
||||
# , 'lineage5', 'lineage6', 'lineage7'
|
||||
)
|
||||
|
||||
# subset selected lineages
|
||||
df_lin = subset(my_df, subset = lineage %in% sel_lineages )
|
||||
table(df_lin$lineage)
|
||||
|
||||
# refactor
|
||||
df_lin$lineage = factor(df_lin$lineage)
|
||||
|
||||
#{RESULT: Total number of samples for lineage}
|
||||
sum(table(df_lin$lineage))
|
||||
|
||||
#{RESULT: No of samples within lineage}
|
||||
table(df_lin$lineage)
|
||||
|
||||
#{Result: No. of unique mutations the 4 lineages contribute to}
|
||||
length(unique(df_lin$mutationinformation))
|
||||
|
||||
u2 = unique(my_df$mutationinformation)
|
||||
u = unique(df_lin$mutationinformation)
|
||||
|
||||
#{Result:Muts not present within selected lineages}
|
||||
check = u2[!u2%in%u]; print(check)
|
||||
|
||||
#=======================
|
||||
# subset dr muts only
|
||||
#=======================
|
||||
my_df_dr = subset(df_lin, mutation_info == dr_muts_col)
|
||||
table(my_df_dr$mutation_info)
|
||||
table(my_df_dr$lineage)
|
||||
|
||||
#=========================
|
||||
# subset other muts only
|
||||
#=========================
|
||||
my_df_other = subset(df_lin, mutation_info == other_muts_col)
|
||||
table(my_df_other$mutation_info)
|
||||
table(my_df_other$lineage)
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#==========================
|
||||
# Plot 1: ALL Muts
|
||||
# x = mcsm_values, y = dist
|
||||
# fill = stability
|
||||
#============================
|
||||
|
||||
#my_plot_name_dm_om = 'lineage_dist_DM_OM_PS.svg'
|
||||
#plot_lineage_dm_om_duet = paste0(plotdir,"/", my_plot_name_dm_om)
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
df <- df_lin
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
rm(df_lin)
|
||||
|
||||
#******************
|
||||
# generate distribution plot of lineages
|
||||
#******************
|
||||
# 2 : ggridges (good!)
|
||||
my_ats = 15 # axis text size
|
||||
my_als = 20 # axis label size
|
||||
|
||||
#=======================
|
||||
# Plot 1: lineage dist
|
||||
#=======================
|
||||
# check plot name
|
||||
plot_lineage_duet
|
||||
|
||||
n_colours = length(unique(df$duet_scaled))
|
||||
|
||||
#my_palette <- colorRampPalette(c(mcsm_red, "#f8766d", "white","#00bfc4", mcsm_blue))(n = 400)
|
||||
my_palette <- colorRampPalette(c(mcsm_red2, mcsm_red1, mcsm_mid, mcsm_blue1, mcsm_blue2))(n = n_colours+1)
|
||||
|
||||
# output svg
|
||||
#svg(plot_lineage_duet)
|
||||
p1 = ggplot(df, aes(x = duet_scaled
|
||||
, y = duet_outcome))+
|
||||
geom_density_ridges_gradient(aes(fill = ..x..)
|
||||
#, jittered_points = TRUE
|
||||
, scale = 3
|
||||
, size = 0.3 ) +
|
||||
facet_wrap( ~lineage
|
||||
, scales = "free"
|
||||
#, switch = 'x'
|
||||
, labeller = labeller(lineage = my_labels)) +
|
||||
coord_cartesian( xlim = c(-1, 1)) +
|
||||
#scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4")
|
||||
# , name = "DUET" ) +
|
||||
#scale_fill_gradientn(colours = c(mcsm_red, "#f8766d", "white","#00bfc4", mcsm_blue)
|
||||
# , name = "DUET" ) +
|
||||
scale_fill_gradientn(colours = my_palette, name = "DUET") +
|
||||
theme(axis.text.x = element_text(size = my_ats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
|
||||
, axis.text.y = element_blank()
|
||||
, axis.title.x = element_blank()
|
||||
, axis.title.y = element_blank()
|
||||
, axis.ticks.y = element_blank()
|
||||
, plot.title = element_blank()
|
||||
, strip.text = element_text(size = my_als)
|
||||
, legend.text = element_text(size = my_als-5)
|
||||
, legend.title = element_text(size = my_als)
|
||||
)
|
||||
|
||||
print(p1)
|
||||
#dev.off()
|
||||
#=======================================
|
||||
# Plot 2: lineage dist by mutation_info
|
||||
#=======================================
|
||||
mutation_info_labels = c("DM", "OM")
|
||||
names(mutation_info_labels) = c(dr_muts_col, other_muts_col)
|
||||
|
||||
p3 = ggplot(df, aes(x = duet_scaled
|
||||
, y = mutation_info))+
|
||||
geom_density_ridges_gradient(aes(fill = ..x..)
|
||||
#, jittered_points = TRUE
|
||||
, scale = 3
|
||||
, size = 0.3 ) +
|
||||
facet_wrap(~lineage
|
||||
# , scales = "free"
|
||||
# #, switch = 'x'
|
||||
, labeller = labeller(lineage = my_labels, mutation_info = mutation_info_labels)) +
|
||||
coord_cartesian( xlim = c(-1, 1)) +
|
||||
#scale_fill_gradientn(colours = c("#ae301e", "white", "#007d85")
|
||||
# , name = "DUET" ) +
|
||||
#scale_fill_gradientn(colours = c("mcsm_red", "white", "mcsm_blue")
|
||||
# , name = "DUET" ) +
|
||||
scale_fill_gradientn(colours = my_palette, name = "DUET") +
|
||||
theme(axis.text.x = element_text(size = my_ats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
|
||||
#, axis.text.y = element_blank()
|
||||
, axis.title.x = element_blank()
|
||||
, axis.title.y = element_blank()
|
||||
, axis.ticks.y = element_blank()
|
||||
, plot.title = element_blank()
|
||||
, strip.text = element_text(size = my_als)
|
||||
, legend.text = element_text(size = my_als-5)
|
||||
, legend.title = element_text(size = my_als)
|
||||
)
|
||||
|
||||
print(p3)
|
||||
|
||||
#==============================
|
||||
|
||||
|
||||
########################################################################
|
||||
#==============
|
||||
# combine plot
|
||||
#===============
|
||||
|
||||
svg(plot_lineage_dist_combined, width = 12, height = 6)
|
||||
|
||||
printFile = cowplot::plot_grid(p1, p3
|
||||
, label_size = my_als+10)
|
||||
|
||||
print(printFile)
|
||||
dev.off()
|
Loading…
Add table
Add a link
Reference in a new issue