trying diff cv thresholds for single gene
This commit is contained in:
parent
8d8a61675f
commit
b87f8d0295
2 changed files with 54 additions and 461 deletions
|
@ -1,453 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Mar 4 15:25:33 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%%
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import pprint as pp
|
||||
from copy import deepcopy
|
||||
from sklearn import linear_model
|
||||
from sklearn import datasets
|
||||
from collections import Counter
|
||||
|
||||
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
||||
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
|
||||
|
||||
from sklearn.naive_bayes import BernoulliNB
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
|
||||
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
|
||||
|
||||
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
|
||||
from sklearn.svm import SVC
|
||||
from xgboost import XGBClassifier
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
|
||||
from sklearn.compose import ColumnTransformer
|
||||
from sklearn.compose import make_column_transformer
|
||||
|
||||
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
||||
|
||||
# added
|
||||
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, LeaveOneOut, KFold, RepeatedKFold, cross_val_predict
|
||||
|
||||
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
||||
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
||||
|
||||
from sklearn.pipeline import Pipeline, make_pipeline
|
||||
|
||||
from sklearn.feature_selection import RFE, RFECV
|
||||
|
||||
import itertools
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from statistics import mean, stdev, median, mode
|
||||
|
||||
from imblearn.over_sampling import RandomOverSampler
|
||||
from imblearn.under_sampling import RandomUnderSampler
|
||||
from imblearn.over_sampling import SMOTE
|
||||
from sklearn.datasets import make_classification
|
||||
from imblearn.combine import SMOTEENN
|
||||
from imblearn.combine import SMOTETomek
|
||||
|
||||
from imblearn.over_sampling import SMOTENC
|
||||
from imblearn.under_sampling import EditedNearestNeighbours
|
||||
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
||||
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.impute import KNNImputer as KNN
|
||||
import json
|
||||
import argparse
|
||||
import re
|
||||
import itertools
|
||||
from sklearn.model_selection import LeaveOneGroupOut
|
||||
from sklearn.decomposition import PCA
|
||||
from sklearn.naive_bayes import ComplementNB
|
||||
from sklearn.dummy import DummyClassifier
|
||||
|
||||
#%% GLOBALS
|
||||
#rs = {'random_state': 42} # INSIDE FUNCTION CALL NOW
|
||||
#njobs = {'n_jobs': os.cpu_count() } # the number of jobs should equal the number of CPU cores
|
||||
|
||||
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'accuracy' : make_scorer(accuracy_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jcc' : make_scorer(jaccard_score)
|
||||
})
|
||||
# for sel_cv INSIDE FUNCTION CALL NOW
|
||||
#skf_cv = StratifiedKFold(n_splits = 10
|
||||
# #, shuffle = False, random_state= None)
|
||||
# , shuffle = True, **rs)
|
||||
|
||||
#rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
||||
# , n_repeats = 3
|
||||
# , **rs)
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
|
||||
###############################################################################
|
||||
score_type_ordermapD = { 'mcc' : 1
|
||||
, 'fscore' : 2
|
||||
, 'jcc' : 3
|
||||
, 'precision' : 4
|
||||
, 'recall' : 5
|
||||
, 'accuracy' : 6
|
||||
, 'roc_auc' : 7
|
||||
, 'TN' : 8
|
||||
, 'FP' : 9
|
||||
, 'FN' : 10
|
||||
, 'TP' : 11
|
||||
, 'trainingY_neg': 12
|
||||
, 'trainingY_pos': 13
|
||||
, 'blindY_neg' : 14
|
||||
, 'blindY_pos' : 15
|
||||
, 'fit_time' : 16
|
||||
, 'score_time' : 17
|
||||
}
|
||||
|
||||
scoreCV_mapD = {'test_mcc' : 'MCC'
|
||||
, 'test_fscore' : 'F1'
|
||||
, 'test_precision' : 'Precision'
|
||||
, 'test_recall' : 'Recall'
|
||||
, 'test_accuracy' : 'Accuracy'
|
||||
, 'test_roc_auc' : 'ROC_AUC'
|
||||
, 'test_jcc' : 'JCC'
|
||||
}
|
||||
|
||||
scoreBT_mapD = {'bts_mcc' : 'MCC'
|
||||
, 'bts_fscore' : 'F1'
|
||||
, 'bts_precision' : 'Precision'
|
||||
, 'bts_recall' : 'Recall'
|
||||
, 'bts_accuracy' : 'Accuracy'
|
||||
, 'bts_roc_auc' : 'ROC_AUC'
|
||||
, 'bts_jcc' : 'JCC'
|
||||
}
|
||||
|
||||
#gene_group = 'gene_name'
|
||||
#%%############################################################################
|
||||
############################
|
||||
# MultModelsCl()
|
||||
# Run Multiple Classifiers
|
||||
############################
|
||||
# Multiple Classification - Model Pipeline
|
||||
def MultModelsCl_noBTS(input_df
|
||||
, target
|
||||
, tts_split_type
|
||||
, resampling_type
|
||||
#, group = None
|
||||
, skf_cv_threshold = 10 #[None, 3, 5, 10]
|
||||
|
||||
, add_cm = True # adds confusion matrix based on cross_val_predict
|
||||
, add_yn = True # adds target var class numbers
|
||||
, var_type = ['numerical', 'categorical','mixed']
|
||||
, scale_numeric = ['min_max', 'std', 'min_max_neg', 'none']
|
||||
|
||||
, return_formatted_output = True
|
||||
|
||||
, random_state = 42
|
||||
, n_jobs = os.cpu_count() # the number of jobs should equal the number of CPU cores
|
||||
):
|
||||
|
||||
'''
|
||||
@ param input_df: input features
|
||||
@ type: df with input features WITHOUT the target variable
|
||||
|
||||
@param target: target (or output) feature
|
||||
@type: df or np.array or Series
|
||||
|
||||
@param skv_cv: stratifiedK fold int or object to allow shuffle and random state to pass
|
||||
@type: int or StratifiedKfold()
|
||||
|
||||
@var_type: numerical, categorical and mixed to determine what col_transform to apply (MinMaxScalar and/or one-hot encoder)
|
||||
@type: list
|
||||
|
||||
returns
|
||||
Dict containing multiple classification scores for each model and mean of each Stratified Kfold including training
|
||||
'''
|
||||
|
||||
#%% Func globals
|
||||
rs = {'random_state': random_state}
|
||||
njobs = {'n_jobs': n_jobs}
|
||||
|
||||
skf_cv = StratifiedKFold(n_splits = skf_cv_threshold
|
||||
#, shuffle = False, random_state= None)
|
||||
, shuffle = True,**rs)
|
||||
|
||||
# rskf_cv = RepeatedStratifiedKFold(n_splits = skf_cv_threshold
|
||||
# , n_repeats = 3
|
||||
# , **rs)
|
||||
# logo = LeaveOneGroupOut()
|
||||
|
||||
# select CV type:
|
||||
# if group == None:
|
||||
# sel_cv = skf_cv
|
||||
# else:
|
||||
# sel_cv = logo
|
||||
#======================================================
|
||||
# Determine categorical and numerical features
|
||||
#======================================================
|
||||
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
|
||||
#======================================================
|
||||
# Determine preprocessing steps ~ var_type
|
||||
#======================================================
|
||||
|
||||
if type(var_type) == list:
|
||||
var_type = str(var_type[0])
|
||||
else:
|
||||
var_type = var_type
|
||||
|
||||
if var_type in ['numerical','mixed']:
|
||||
if scale_numeric == ['none']:
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)]
|
||||
if scale_numeric != ['none']:
|
||||
if scale_numeric == ['min_max']:
|
||||
scaler = MinMaxScaler()
|
||||
if scale_numeric == ['min_max_neg']:
|
||||
scaler = MinMaxScaler(feature_range=(-1, 1))
|
||||
if scale_numeric == ['std']:
|
||||
scaler = StandardScaler()
|
||||
|
||||
t = [('num', scaler, numerical_ix)
|
||||
, ('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
|
||||
if var_type == 'categorical':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
|
||||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder='passthrough')
|
||||
|
||||
|
||||
#======================================================
|
||||
# Specify multiple Classification Models
|
||||
#======================================================
|
||||
models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
||||
# , ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True, verbose = 3, n_estimators = 100) )
|
||||
# #, ('Bernoulli NB' , BernoulliNB() ) # pks Naive Bayes, CAUTION
|
||||
# , ('Complement NB' , ComplementNB() )
|
||||
# , ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||
# , ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||
# , ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
||||
# , ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
||||
# , ('Gaussian NB' , GaussianNB() )
|
||||
# , ('Gaussian Process' , GaussianProcessClassifier(**rs) )
|
||||
# , ('K-Nearest Neighbors' , KNeighborsClassifier() )
|
||||
# , ('LDA' , LinearDiscriminantAnalysis() )
|
||||
# , ('Logistic Regression' , LogisticRegression(**rs) )
|
||||
# , ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs))
|
||||
# , ('MLP' , MLPClassifier(max_iter = 500, **rs) )
|
||||
# , ('Multinomial NB' , MultinomialNB() )
|
||||
# , ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
||||
# , ('QDA' , QuadraticDiscriminantAnalysis() )
|
||||
# , ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000, **njobs ) )
|
||||
# , ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
|
||||
# , n_estimators = 1000
|
||||
# , bootstrap = True
|
||||
# , oob_score = True
|
||||
# , **njobs
|
||||
# , **rs
|
||||
# , max_features = 'auto') )
|
||||
# , ('Ridge Classifier' , RidgeClassifier(**rs) )
|
||||
# , ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) )
|
||||
# , ('SVC' , SVC(**rs) )
|
||||
# , ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
||||
, ('XGBoost' , XGBClassifier(**rs, verbosity = 0, use_label_encoder = False, **njobs) )
|
||||
, ('Dummy Classifier' , DummyClassifier(strategy = 'most_frequent') )
|
||||
]
|
||||
|
||||
mm_skf_scoresD = {}
|
||||
|
||||
print('\n==============================================================\n'
|
||||
, '\nRunning several classification models (n):', len(models)
|
||||
,'\nList of models:')
|
||||
for m in models:
|
||||
print(m)
|
||||
print('\n================================================================\n')
|
||||
|
||||
index = 1
|
||||
for model_name, model_fn in models:
|
||||
print('\nRunning classifier:', index
|
||||
, '\nModel_name:' , model_name
|
||||
, '\nModel func:' , model_fn)
|
||||
index = index+1
|
||||
|
||||
model_pipeline = Pipeline([
|
||||
('prep' , col_transform)
|
||||
, ('model' , model_fn)])
|
||||
|
||||
print('\nRunning model pipeline:', model_pipeline)
|
||||
cv_modD = cross_validate(model_pipeline
|
||||
, input_df
|
||||
, target
|
||||
, cv = skf_cv
|
||||
#, groups = group
|
||||
, scoring = scoring_fn
|
||||
, return_train_score = True)
|
||||
#==============================
|
||||
# Extract mean values for CV
|
||||
#==============================
|
||||
mm_skf_scoresD[model_name] = {}
|
||||
|
||||
for key, value in cv_modD.items():
|
||||
print('\nkey:', key, '\nvalue:', value)
|
||||
print('\nmean value:', np.mean(value))
|
||||
mm_skf_scoresD[model_name][key] = round(np.mean(value),2)
|
||||
|
||||
# ADD more info: meta data related to input df
|
||||
mm_skf_scoresD[model_name]['resampling'] = resampling_type
|
||||
mm_skf_scoresD[model_name]['n_training_size'] = len(input_df)
|
||||
mm_skf_scoresD[model_name]['n_trainingY_ratio'] = round(Counter(target)[0]/Counter(target)[1], 2)
|
||||
mm_skf_scoresD[model_name]['n_features'] = len(input_df.columns)
|
||||
mm_skf_scoresD[model_name]['tts_split'] = tts_split_type
|
||||
|
||||
#######################################################################
|
||||
#======================================================
|
||||
# Option: Add confusion matrix from cross_val_predict
|
||||
# Understand and USE with caution
|
||||
#======================================================
|
||||
if add_cm:
|
||||
cmD = {}
|
||||
|
||||
# Calculate cm
|
||||
y_pred = cross_val_predict(model_pipeline
|
||||
, input_df
|
||||
, target
|
||||
, cv = skf_cv
|
||||
#, groups = group
|
||||
, **njobs)
|
||||
#_tn, _fp, _fn, _tp = confusion_matrix(y_pred, y).ravel() # internally
|
||||
tn, fp, fn, tp = confusion_matrix(y_pred, target).ravel()
|
||||
|
||||
# Build cm dict
|
||||
cmD = {'TN' : tn
|
||||
, 'FP': fp
|
||||
, 'FN': fn
|
||||
, 'TP': tp}
|
||||
|
||||
# Update cv dict cmD
|
||||
mm_skf_scoresD[model_name].update(cmD)
|
||||
|
||||
#=============================================
|
||||
# Option: Add targety numbers for data
|
||||
#=============================================
|
||||
if add_yn:
|
||||
tnD = {}
|
||||
|
||||
# Build tn numbers dict
|
||||
tnD = {'n_trainingY_neg' : Counter(target)[0]
|
||||
, 'n_trainingY_pos' : Counter(target)[1] }
|
||||
|
||||
# Update cv dict with cmD and tnD
|
||||
mm_skf_scoresD[model_name].update(tnD)
|
||||
|
||||
#%%
|
||||
#return(mm_skf_scoresD)
|
||||
#============================
|
||||
# Process the dict to have WF
|
||||
#============================
|
||||
if return_formatted_output:
|
||||
CV_BT_metaDF = ProcessMultModelsCl(mm_skf_scoresD, cv_threshold_suffix = skf_cv_threshold)
|
||||
return(CV_BT_metaDF)
|
||||
else:
|
||||
return(mm_skf_scoresD)
|
||||
|
||||
#%% Process output function ###################################################
|
||||
############################
|
||||
# ProcessMultModelsCl()
|
||||
############################
|
||||
#Processes the dict from above if use_formatted_output = True
|
||||
|
||||
def ProcessMultModelsCl(inputD = {}
|
||||
, cv_threshold_suffix = 10
|
||||
#, blind_test_data = True
|
||||
):
|
||||
|
||||
scoresDF = pd.DataFrame(inputD)
|
||||
|
||||
#------------------------
|
||||
# Extracting split_name
|
||||
#-----------------------
|
||||
tts_split_nameL = []
|
||||
for k,v in inputD.items():
|
||||
tts_split_nameL = tts_split_nameL + [v['tts_split']]
|
||||
|
||||
if len(set(tts_split_nameL)) == 1:
|
||||
tts_split_name = str(list(set(tts_split_nameL))[0])
|
||||
print('\nExtracting tts_split_name:', tts_split_name)
|
||||
|
||||
#----------------------
|
||||
# WF: CV results
|
||||
#----------------------
|
||||
scoresDFT = scoresDF.T
|
||||
|
||||
scoresDF_CV = scoresDFT.filter(regex='^test_.*$', axis = 1); scoresDF_CV.columns
|
||||
# map colnames for consistency to allow concatenting
|
||||
scoresDF_CV.columns = scoresDF_CV.columns.map(scoreCV_mapD); scoresDF_CV.columns
|
||||
#scoresDF_CV['source_data'] = 'CV'
|
||||
scoresDF_CV['source_data'] = 'CV_' + str(cv_threshold_suffix)
|
||||
|
||||
|
||||
#----------------------
|
||||
# WF: Meta data
|
||||
#----------------------
|
||||
metaDF = scoresDFT.filter(regex='^(?!test_.*$|bts_.*$|train_.*$).*'); metaDF.columns
|
||||
|
||||
print('\nTotal cols in each df:'
|
||||
, '\nCV df:', len(scoresDF_CV.columns)
|
||||
, '\nmetaDF:', len(metaDF.columns))
|
||||
|
||||
#-------------------------------------
|
||||
# Combine WF: CV + Metadata
|
||||
#-------------------------------------
|
||||
|
||||
combDF = pd.merge(scoresDF_CV, metaDF, left_index = True, right_index = True)
|
||||
print('\nAdding column: Model_name')
|
||||
combDF['Model_name'] = combDF.index
|
||||
|
||||
#-------------------------------------
|
||||
# Combine WF+Metadata: Final output
|
||||
#-------------------------------------
|
||||
|
||||
# if len(combDF.columns) == expected_ncols_out:
|
||||
# print('\nPASS: Combined df has expected ncols')
|
||||
# else:
|
||||
# sys.exit('\nFAIL: Length mismatch for combined_df')
|
||||
|
||||
# print('\nAdding column: Model_name')
|
||||
# combDF['Model_name'] = combDF.index
|
||||
|
||||
print('\n========================================================='
|
||||
, '\nSUCCESS: Ran multiple classifiers'
|
||||
, '\n=======================================================')
|
||||
|
||||
#resampling_methods_wf = combined_baseline_wf[['resampling']]
|
||||
#resampling_methods_wf = resampling_methods_wf.drop_duplicates()
|
||||
#, '\n', resampling_methods_wf)
|
||||
|
||||
return combDF
|
||||
|
||||
###############################################################################
|
|
@ -15,8 +15,7 @@ sys.path
|
|||
from GetMLData import *
|
||||
from SplitTTS import *
|
||||
from MultClfs import *
|
||||
from MultClfs_noBTS import *
|
||||
|
||||
from MultClfs_CVs import *
|
||||
|
||||
#%%
|
||||
rs = {'random_state': 42}
|
||||
|
@ -27,6 +26,7 @@ skf_cv = StratifiedKFold(n_splits = 10
|
|||
# , n_repeats = 3
|
||||
# , **rs)
|
||||
# param dict for getmldata()
|
||||
#%% READ data
|
||||
gene_model_paramD = {'data_combined_model' : False
|
||||
, 'use_or' : False
|
||||
, 'omit_all_genomic_features': False
|
||||
|
@ -40,7 +40,7 @@ df = getmldata('embB', 'ethambutol' , **gene_model_paramD)
|
|||
#df = getmldata('rpoB', 'rifampicin' , **gene_model_paramD)
|
||||
#df = getmldata('gid' , 'streptomycin' , **gene_model_paramD)
|
||||
#df = getmldata('alr' , 'cycloserine' , **gene_model_paramD)
|
||||
|
||||
#%% SPLIT, Data and Resampling types
|
||||
all(df.columns.isin(['gene_name'])) # should be False
|
||||
spl_type = '70_30'
|
||||
#spl_type = '80_20'
|
||||
|
@ -143,11 +143,13 @@ from sklearn.utils import all_estimators
|
|||
all_clfs = all_estimators(type_filter="classifier")
|
||||
df = pd.DataFrame (all_clfs, columns = ['classifier_name', 'classifier_fn'])
|
||||
df.to_csv("Model_names_ALL.csv")
|
||||
################################################################
|
||||
#%% TEST different CV Thresholds for split_type = NONE
|
||||
|
||||
################################################################
|
||||
Counter(df2['y'])
|
||||
Counter(df2['y_bts'])
|
||||
|
||||
# READ Data
|
||||
spl_type = 'none'
|
||||
data_type = "complete"
|
||||
|
||||
|
@ -160,13 +162,13 @@ df2 = split_tts(df
|
|||
, include_gene_name = True
|
||||
, random_state = 42 # default
|
||||
)
|
||||
|
||||
fooD = MultModelsCl_noBTS(input_df = df2['X']
|
||||
#%% Trying different CV thresholds for resampling 'none' ONLY
|
||||
fooD = MultModelsCl_CVs(input_df = df2['X']
|
||||
, target = df2['y']
|
||||
, skf_cv_threshold = 10 # IMP to change
|
||||
|
||||
, tts_split_type = spl_type
|
||||
, resampling_type = 'XXXX' # default
|
||||
, resampling_type = 'NONE' # default
|
||||
|
||||
, add_cm = True # adds confusion matrix based on cross_val_predict
|
||||
, add_yn = True # adds target var class numbers
|
||||
|
@ -185,7 +187,7 @@ for k, v in fooD.items():
|
|||
)
|
||||
|
||||
# formatted df
|
||||
foo_df3 = MultModelsCl_noBTS(input_df = df2['X']
|
||||
foo_df3 = MultModelsCl_CVs(input_df = df2['X']
|
||||
, target = df2['y']
|
||||
, skf_cv_threshold = 5 # IMP to change
|
||||
|
||||
|
@ -203,6 +205,7 @@ foo_df3 = MultModelsCl_noBTS(input_df = df2['X']
|
|||
|
||||
)
|
||||
|
||||
|
||||
dfs_combine_wf = [foo_df, foo_df2, foo_df3]
|
||||
|
||||
common_cols_wf = list(set.intersection(*(set(df.columns) for df in dfs_combine_wf)))
|
||||
|
@ -246,3 +249,46 @@ if len(common_cols_wf) == dfs_ncols_wf :
|
|||
, '\nGot:', len(combined_baseline_wf.columns))
|
||||
sys.exit('\nFIRST IF FAILS')
|
||||
|
||||
#%% TRY with dict containing different Resampling types
|
||||
paramD = {
|
||||
'baseline_paramD': { 'input_df' : df2['X']
|
||||
, 'target' : df2['y']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type': 'none'}
|
||||
|
||||
, 'smnc_paramD' : { 'input_df' : df2['X_smnc']
|
||||
, 'target' : df2['y_smnc']
|
||||
, 'var_type' : 'mixed'
|
||||
, 'resampling_type' : 'smnc'}
|
||||
}
|
||||
|
||||
mmDD = {}
|
||||
for k, v in paramD.items():
|
||||
print(k)
|
||||
all_scoresDF = pd.DataFrame()
|
||||
for skf_cv_threshold in [3,5]:
|
||||
print('\nRunning CV threhhold:', skf_cv_threshold)
|
||||
current_scoreDF = MultModelsCl_CVs(**paramD[k]
|
||||
, skf_cv_threshold = skf_cv_threshold # IMP to change
|
||||
, tts_split_type = spl_type
|
||||
#, resampling_type = 'XXXX' # default
|
||||
|
||||
, add_cm = True # adds confusion matrix based on cross_val_predict
|
||||
, add_yn = True # adds target var class numbers
|
||||
|
||||
#, var_type = ['mixed']
|
||||
, scale_numeric = ['min_max']
|
||||
, random_state = 42
|
||||
, n_jobs = os.cpu_count()
|
||||
, return_formatted_output = True
|
||||
)
|
||||
|
||||
all_scoresDF = pd.concat([all_scoresDF, current_scoreDF])
|
||||
mmDD[k] = all_scoresDF
|
||||
|
||||
for k, v in mmDD.items():
|
||||
print(k, v)
|
||||
out_wf= pd.concat(mmDD, ignore_index = True)
|
||||
out_wf2= pd.concat(mmDD)
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue