added corr data to get_plotting_dfs.R and generate corr plots

This commit is contained in:
Tanushree Tunstall 2021-06-28 17:25:45 +01:00
parent 639ccf1cd7
commit b614962e45
4 changed files with 252 additions and 19 deletions

View file

@ -231,6 +231,221 @@ str(wide_df_or_mult)
position_or_mult = as.numeric(colnames(wide_df_or_mult))
####################################################################
# Data for Corrplots
####################################################################
cat("\n=========================================="
, "\nCORR PLOTS data: PS"
, "\n===========================================")
df_ps = merged_df2
#--------------------
# adding log cols
#--------------------
df_ps$log10_or_mychisq = log10(df_ps$or_mychisq)
df_ps$neglog_pval_fisher = -log10(df_ps$pval_fisher)
##df_ps$log10_or_kin = log10(df_ps$or_kin)
##df_ps$neglog_pwald_kin = -log10(df_ps$pwald_kin)
#df_ps$mutation_info_labels = ifelse(df_ps$mutation_info == dr_muts_col, 1, 0)
#----------------------------
# columns for corr plots:PS
#----------------------------
# subset data to generate pairwise correlations
cols_to_select = c("mutationinformation"
, "duet_scaled"
, "foldx_scaled"
#, "mutation_info_labels"
, "asa"
, "rsa"
, "rd_values"
, "kd_values"
, "log10_or_mychisq"
, "neglog_pval_fisher"
##, "or_kin"
##, "neglog_pwald_kin"
, "af"
##, "af_kin"
, "duet_outcome"
, drug)
corr_data_ps = df_ps[cols_to_select]
dim(corr_data_ps)
#--------------------------------------
# assign nice colnames (for display)
#--------------------------------------
my_corr_colnames = c("Mutation"
, "DUET"
, "Foldx"
#, "Mutation class"
, "ASA"
, "RSA"
, "RD"
, "KD"
, "Log (OR)"
, "-Log (P)"
##, "Adjusted (OR)"
##, "-Log (P wald)"
, "MAF"
##, "AF_kin"
, "duet_outcome"
, drug)
length(my_corr_colnames)
colnames(corr_data_ps)
colnames(corr_data_ps) <- my_corr_colnames
colnames(corr_data_ps)
start = 1
end = which(colnames(corr_data_ps) == drug); end # should be the last column
offset = 1
#===========================
# Corr data for plots: PS
# big_df ps: ~ merged_df2
#===========================
#corr_ps_df2 = corr_data_ps[start:(end-offset)] # without drug
corr_ps_df2 = corr_data_ps[start:end]
head(corr_ps_df2)
#===========================
# Corr data for plots: PS
# short_df ps: ~merged_df3
#===========================
corr_ps_df3 = corr_ps_df2[!duplicated(corr_ps_df2$Mutation),]
na_or = sum(is.na(corr_ps_df3$`Log (OR)`))
check1 = nrow(corr_ps_df3) - na_or
##na_adj_or = sum(is.na(corr_ps_df3$`adjusted (OR)`))
##check2 = nrow(corr_ps_df3) - na_adj_or
if (nrow(corr_ps_df3) == nrow(merged_df3) && nrow(merged_df3_comp) == check1) {
cat( "\nPASS: No. of rows for corr_ps_df3 match"
, "\nPASS: No. of OR values checked: " , check1)
} else {
cat("\nFAIL: Numbers mismatch:"
, "\nExpected nrows: ", nrow(merged_df3)
, "\nGot: ", nrow(corr_ps_df3)
, "\nExpected OR values: ", nrow(merged_df3_comp)
, "\nGot: ", check1)
}
#=================================
# Data for Correlation plots: LIG
#=================================
cat("\n=========================================="
, "\nCORR PLOTS data: PS"
, "\n===========================================")
df_lig = merged_df2_lig
table(df_lig$ligand_outcome)
#--------------------
# adding log cols
#--------------------
df_lig$log10_or_mychisq = log10(df_lig$or_mychisq)
df_lig$neglog_pval_fisher = -log10(df_lig$pval_fisher)
##df_lig$log10_or_kin = log10(df_lig$or_kin)
##df_lig$neglog_pwald_kin = -log10(df_lig$pwald_kin)
#----------------------------
# columns for corr plots:PS
#----------------------------
# subset data to generate pairwise correlations
cols_to_select = c("mutationinformation"
, "affinity_scaled"
#, "mutation_info_labels"
, "asa"
, "rsa"
, "rd_values"
, "kd_values"
, "log10_or_mychisq"
, "neglog_pval_fisher"
##, "or_kin"
##, "neglog_pwald_kin"
, "af"
##, "af_kin"
, "ligand_outcome"
, drug)
corr_data_lig = df_lig[, cols_to_select]
dim(corr_data_lig)
#--------------------------------------
# assign nice colnames (for display)
#--------------------------------------
my_corr_colnames = c("Mutation"
, "Ligand Affinity"
#, "Mutation class"
, "ASA"
, "RSA"
, "RD"
, "KD"
, "Log (OR)"
, "-Log (P)"
##, "Adjusted (OR)"
##, "-Log (P wald)"
, "MAF"
##, "MAF_kin"
, "ligand_outcome"
, drug)
length(my_corr_colnames)
colnames(corr_data_lig)
colnames(corr_data_lig) <- my_corr_colnames
colnames(corr_data_lig)
start = 1
end = which(colnames(corr_data_lig) == drug); end # should be the last column
offset = 1
#=============================
# Corr data for plots: LIG
# big_df lig: ~ merged_df2_lig
#==============================
#corr_lig_df2 = corr_data_lig[start:(end-offset)] # without drug
corr_lig_df2 = corr_data_lig[start:end]
head(corr_lig_df2)
#=============================
# Corr data for plots: LIG
# short_df lig: ~ merged_df3_lig
#==============================
corr_lig_df3 = corr_lig_df2[!duplicated(corr_lig_df2$Mutation),]
na_or_lig = sum(is.na(corr_lig_df3$`Log (OR)`))
check1_lig = nrow(corr_lig_df3) - na_or_lig
if (nrow(corr_lig_df3) == nrow(merged_df3_lig) && nrow(merged_df3_comp_lig) == check1_lig) {
cat( "\nPASS: No. of rows for corr_lig_df3 match"
, "\nPASS: No. of OR values checked: " , check1_lig)
} else {
cat("\nFAIL: Numbers mismatch:"
, "\nExpected nrows: ", nrow(merged_df3_lig)
, "\nGot: ", nrow(corr_ps_df3_lig)
, "\nExpected OR values: ", nrow(merged_df3_comp_lig)
, "\nGot: ", check1_lig)
}
# remove unnecessary columns
identical(corr_data_lig, corr_lig_df2)
identical(corr_data_ps, corr_ps_df2)
rm(df_ps, df_lig, corr_data_ps, corr_data_lig)
########################################################################
# End of script
########################################################################
########################################################################
rm(foo)