logoplot from df and seqs with custom height
This commit is contained in:
parent
34a2057d29
commit
b5aa524914
3 changed files with 284 additions and 13 deletions
|
@ -160,7 +160,6 @@ if (max(mcsm_data2$Dis_lig_Ang) < 10){
|
|||
mcsm_data = mcsm_data2
|
||||
#!!!!!!!!!!!!!!!!!!!!!
|
||||
#=======================================================================
|
||||
|
||||
# clear variables
|
||||
rm(mcsm_data2)
|
||||
|
||||
|
@ -173,13 +172,13 @@ head(mcsm_data$Mutationinformation)
|
|||
|
||||
orig_col = ncol(mcsm_data)
|
||||
# get freq count of positions and add to the df
|
||||
setDT(mcsm_data)[, occurrence := .N, by = .(Position)]
|
||||
setDT(mcsm_data)[, mut_pos_occurrence := .N, by = .(position)]
|
||||
|
||||
cat('Added 1 col: position frequency to see which posn has how many muts'
|
||||
cat('Added col: position frequency to see which posn has how many muts'
|
||||
, '\nNo. of cols now', ncol(mcsm_data)
|
||||
, '\nNo. of cols before: ', orig_col)
|
||||
|
||||
pos_count_check = data.frame(mcsm_data$Position, mcsm_data$occurrence)
|
||||
mut_pos_occurrence = data.frame(mcsm_data$id, mcsm_data$Position, mcsm_data$mut_pos_occurrence)
|
||||
|
||||
######################################
|
||||
# input file2 meta data with AFandOR
|
||||
|
@ -205,8 +204,21 @@ str(meta_with_afor)
|
|||
head(meta_with_afor$Mutationinformation)
|
||||
meta_with_afor = meta_with_afor[order(meta_with_afor$Mutationinformation),]
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
|
||||
orig_col2 = ncol(meta_with_afor)
|
||||
|
||||
# get freq count of positions and add to the df
|
||||
setDT(meta_with_afor)[, sample_pos_occurrence := .N, by = .(Position)]
|
||||
|
||||
cat('Added col: position frequency of samples to check'
|
||||
,'how many samples correspond to a partiulcar posn associated with muts'
|
||||
, '\nNo. of cols now', ncol(meta_with_afor)
|
||||
, '\nNo. of cols before: ', orig_col2)
|
||||
|
||||
sample_pos_occurrence = data.frame(meta_with_afor$id, meta_with_afor$position, meta_with_afor$sample_pos_occurrence)
|
||||
|
||||
#=======================================================================
|
||||
cat('Begin merging dfs with NAs',
|
||||
cat('Begin merging dfs with NAs'
|
||||
, '\n===============================================================')
|
||||
|
||||
###########################
|
||||
|
@ -315,7 +327,7 @@ if (identical(sum(is.na(merged_df3$OR))
|
|||
#=======================================================================
|
||||
#%% merging without NAs
|
||||
|
||||
cat('Begin merging dfs without NAs',
|
||||
cat('Begin merging dfs without NAs'
|
||||
, '\n===============================================================')
|
||||
|
||||
cat('Merging dfs without any NAs: big df (1-many relationship b/w id & mut)'
|
||||
|
@ -378,7 +390,7 @@ if(nrow(merged_df3_comp) == nrow(merged_df3)){
|
|||
#*************************
|
||||
# clear variables
|
||||
rm(mcsm_data, meta_with_afor, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, orig_col, outdir)
|
||||
rm(pos_count_check)
|
||||
rm(mut_pos_occurrence)
|
||||
#%% end of script
|
||||
#=======================================================================
|
||||
|
||||
|
|
|
@ -155,14 +155,17 @@ head(mcsm_data$Mutationinformation)
|
|||
orig_col = ncol(mcsm_data)
|
||||
|
||||
# get freq count of positions and add to the df
|
||||
setDT(mcsm_data)[, occurrence := .N, by = .(Position)]
|
||||
setDT(mcsm_data)[, mut_pos_occurrence := .N, by = .(Position)]
|
||||
|
||||
cat('Added 1 col: position frequency to see which posn has how many muts'
|
||||
cat('Added col: position frequency of muts to see which posn has how many muts'
|
||||
, '\nNo. of cols now', ncol(mcsm_data)
|
||||
, '\nNo. of cols before: ', orig_col)
|
||||
|
||||
pos_count_check = data.frame(mcsm_data$Position, mcsm_data$occurrence)
|
||||
mut_pos_occurrence = data.frame(mcsm_data$Mutationinformation
|
||||
, mcsm_data$Position
|
||||
, mcsm_data$mut_pos_occurrence)
|
||||
|
||||
colnames(mut_pos_occurrence) = c('Mutationinformation', 'position', 'mut_pos_occurrence')
|
||||
#######################################
|
||||
# input file 2: meta data with AFandOR
|
||||
#######################################
|
||||
|
@ -201,8 +204,25 @@ str(meta_with_afor)
|
|||
head(meta_with_afor$Mutationinformation)
|
||||
meta_with_afor = meta_with_afor[order(meta_with_afor$Mutationinformation),]
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
|
||||
orig_col2 = ncol(meta_with_afor)
|
||||
|
||||
# get freq count of positions and add to the df
|
||||
setDT(meta_with_afor)[, sample_pos_occurrence := .N, by = .(position)]
|
||||
|
||||
cat('Added col: position frequency of samples to check'
|
||||
,'how many samples correspond to a partiulcar posn associated with muts'
|
||||
, '\nNo. of cols now', ncol(meta_with_afor)
|
||||
, '\nNo. of cols before: ', orig_col2)
|
||||
|
||||
sample_pos_occurrence = data.frame(meta_with_afor$id
|
||||
, meta_with_afor$mutation
|
||||
, meta_with_afor$Mutationinformation
|
||||
, meta_with_afor$position
|
||||
, meta_with_afor$sample_pos_occurrence)
|
||||
colnames(sample_pos_occurrence) = c('id', 'mutation', 'Mutationinformation', 'position', 'sample_pos_occurrence')
|
||||
#=======================================================================
|
||||
cat('Begin merging dfs with NAs',
|
||||
cat('Begin merging dfs with NAs'
|
||||
, '\n===============================================================')
|
||||
|
||||
###########################
|
||||
|
@ -313,7 +333,7 @@ if (identical(sum(is.na(merged_df3$OR))
|
|||
#=======================================================================
|
||||
#%% merging without NAs
|
||||
|
||||
cat('Begin merging dfs without NAs',
|
||||
cat('Begin merging dfs without NAs'
|
||||
, '\n===============================================================')
|
||||
|
||||
cat('Merging dfs without any NAs: big df (1-many relationship b/w id & mut)'
|
||||
|
@ -414,10 +434,28 @@ for (i in outvars){
|
|||
# alternate way to replace with implicit loop
|
||||
# FIXME
|
||||
#sapply(outvars, function(x, y) write.csv(get(outvars), paste0(outdir, '/', outvars, '.csv')))
|
||||
|
||||
#=======================================================================
|
||||
#%% merging mut_pos_occurrence and sample_pos_occurence
|
||||
# FIXME
|
||||
#cat('Merging dfs with positional frequency from mcsm and meta_data'
|
||||
# , '\nNcol in mut_pos_occurrence:', ncol(mut_pos_occurrence)
|
||||
# , '\nncol in sample_pos_occurence:', ncol(sample_pos_occurrence)
|
||||
# ,'\nlinking col:', intersect(colnames(sample_pos_occurrence), colnames(mut_pos_occurrence))
|
||||
# ,'\nfilename: merged_df4')
|
||||
|
||||
#merged_df4 = merge(sample_pos_occurrence, mut_pos_occurrence
|
||||
# , by = 'position'
|
||||
# , all = T)
|
||||
|
||||
#out_filename4 = 'mut_and_sample_freq.csv'
|
||||
#outfile4 = paste0(outdir, '/', out_filename4)
|
||||
|
||||
#*************************
|
||||
# clear variables
|
||||
rm(mcsm_data, meta_with_afor, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, orig_col, outdir)
|
||||
rm(pos_count_check)
|
||||
rm(mut_pos_occurrence, sample_pos_occurrence)
|
||||
#rm(merged_df4)
|
||||
#%% end of script
|
||||
#=======================================================================
|
||||
|
||||
|
|
221
plotting_test/logo_plot.R
Normal file
221
plotting_test/logo_plot.R
Normal file
|
@ -0,0 +1,221 @@
|
|||
#=======================================================================
|
||||
# Task: To generate a logo plot or bar plot but coloured
|
||||
# aa properties.
|
||||
# step1: read mcsm file and OR file
|
||||
# step2: plot wild type positions
|
||||
# step3: plot mutants per position coloured by aa properties
|
||||
# step4: make the size of the letters/bars prop to OR if you can!
|
||||
|
||||
# useful links
|
||||
# https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
||||
# https://omarwagih.github.io/ggseqlogo/
|
||||
# https://kkdey.github.io/Logolas-pages/workflow.html
|
||||
# A new sequence logo plot to highlight enrichment and depletion.
|
||||
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288878/
|
||||
|
||||
#very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
|
||||
#=======================================================================
|
||||
#%% specify curr dir
|
||||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/plotting_test/')
|
||||
getwd()
|
||||
#=======================================================================
|
||||
#%% load packages
|
||||
|
||||
# header file
|
||||
header_dir = '~/git/LSHTM_analysis/'
|
||||
source(paste0(header_dir, '/', 'my_header.R'))
|
||||
#=======================================================================
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = paste0(gene,'_p.')
|
||||
cat(gene_match)
|
||||
|
||||
#===========
|
||||
# data dir
|
||||
#===========
|
||||
datadir = paste0('~/git/Data')
|
||||
|
||||
#===========
|
||||
# input
|
||||
#===========
|
||||
# source R script 'combining_two_df.R'
|
||||
#indir = paste0(datadir, '/', drug, '/', 'output') # reading files
|
||||
indir = '../meta_data_analysis' # sourcing R script
|
||||
in_filename = 'combining_df_ps.R'
|
||||
infile = paste0(indir, '/', in_filename)
|
||||
cat(paste0('Input is a R script: ', '\'', infile, '\'')
|
||||
, '\n========================================================')
|
||||
|
||||
#===========
|
||||
# output
|
||||
#===========
|
||||
# 1) lineage dist of all muts
|
||||
outdir = paste0('~/git/Data', '/', drug, '/', 'output/plots') #same as indir
|
||||
#cat('Output dir: ', outdir, '\n')
|
||||
#file_type = '.svg'
|
||||
#out_filename1 = paste0(tolower(gene), '_lineage_dist_ps', file_type)
|
||||
#outfile1 = paste0(outdir, '/', out_filename1)
|
||||
#cat(paste0('Output plot1 :', outfile1)
|
||||
# , '\n========================================================')
|
||||
|
||||
#%% end of variable assignment for input and output files
|
||||
#=======================================================================
|
||||
##%% read input file
|
||||
cat('Reading input file(sourcing R script):', in_filename)
|
||||
|
||||
source(infile)
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
# df with NA for pyrazinamide:
|
||||
# merged_df2
|
||||
# merged_df3
|
||||
|
||||
# df without NA for pyrazinamide:
|
||||
# merged_df2_comp
|
||||
# merged_df3_comp
|
||||
#===========================
|
||||
|
||||
###########################
|
||||
# Data for plots
|
||||
# you need merged_df2 or merged_df2_comp
|
||||
# since this is one-many relationship
|
||||
# i.e the same SNP can belong to multiple lineages
|
||||
# using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available, hence use df with NA
|
||||
|
||||
# This will the first plotting df
|
||||
# Then subset this to extract dr muts only (second plottig df)
|
||||
###########################
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# uncomment as necessary
|
||||
# REASSIGNMENT
|
||||
#my_data = merged_df2
|
||||
#my_data = merged_df2_comp
|
||||
#my_data = merged_df3
|
||||
my_data = merged_df3_comp
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_data)
|
||||
str(my_data)
|
||||
|
||||
c1 = unique(my_data$Position)
|
||||
nrow(my_data)
|
||||
cat('No. of rows in my_data:', nrow(my_data)
|
||||
, '\nDistinct positions corresponding to snps:', length(c1)
|
||||
, '\n===========================================================')
|
||||
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
# FIXME: Think and decide what you want to remove
|
||||
# mut_pos_occurence < 1 or sample_pos_occurrence <1
|
||||
|
||||
# get freq count of positions so you can subset freq<1
|
||||
require(data.table)
|
||||
#setDT(my_data)[, mut_pos_occurrence := .N, by = .(Position)] #265, 14
|
||||
|
||||
#extract freq_pos>1
|
||||
#my_data_snp = my_data[my_data$occurrence!=1,]
|
||||
|
||||
#u = unique(my_data_snp$Position) #73
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT to prevent changing code
|
||||
my_data_snp = my_data
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
#=======================================================================
|
||||
#%% logo plots from dataframe
|
||||
|
||||
#############
|
||||
# PLOTS: ggseqlogo with custom height
|
||||
# https://omarwagih.github.io/ggseqlogo/
|
||||
#############
|
||||
#require(ggplot2)
|
||||
#require(tidyverse)
|
||||
library(ggseqlogo)
|
||||
|
||||
foo = my_data_snp[, c("Position", "Mutant_type","ratioDUET", "OR"
|
||||
, "mut_prop_polarity", "mut_prop_water") ]
|
||||
|
||||
# log10OR
|
||||
# FIXME: at the source script (when calculating AFandOR)
|
||||
my_data_snp$log10or = log10(my_data_snp$OR)
|
||||
bar = my_data_snp[, c('Position', 'Mutant_type', 'OR', 'logor', 'log10or')]
|
||||
|
||||
|
||||
bar_or = my_data_snp[, c('Position', 'Mutant_type', 'OR')]
|
||||
wide_df_or <- bar_or %>% spread(Position, OR, fill = 0)
|
||||
wide_df_or = as.matrix(wide_df_or)
|
||||
rownames(wide_df_or) = wide_df_or[,1]
|
||||
wide_df_or = wide_df_or[,-1]
|
||||
|
||||
# custom height (OR) logo plot: yayy works
|
||||
ggseqlogo(wide_df_or, method='custom', seq_type='aa') + ylab('my custom height') +
|
||||
theme(legend.position = "bottom"
|
||||
, axis.text.x = element_text(size = 11
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
, axis.text.y = element_text(size = 15
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0))+
|
||||
labs(title = "AA logo plot"
|
||||
, x = "Wild-type Position"
|
||||
, y = "OR")
|
||||
#%% end of logo plot with OR as height
|
||||
#=======================================================================
|
||||
# extracting data with log10OR
|
||||
bar_logor = my_data_snp[, c('Position', 'Mutant_type', 'log10or')]
|
||||
wide_df_logor <- bar_logor %>% spread(Position, log10or, fill = 0)
|
||||
|
||||
wide_df_logor = as.matrix(wide_df_logor)
|
||||
rownames(wide_df_logor) = wide_df_logor[,1]
|
||||
wide_df_logor = wide_df_logor[,-1]
|
||||
|
||||
# custom height (log10OR) logo plot: yayy works
|
||||
ggseqlogo(wide_df_logor, method='custom', seq_type='aa') + ylab('my custom height') +
|
||||
theme(legend.position = "bottom"
|
||||
, axis.text.x = element_text(size = 11
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4)
|
||||
, axis.text.y = element_text(size = 15
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0))+
|
||||
labs(title = "AA logo plot"
|
||||
, x = "Wild-type Position"
|
||||
, y = "Log10(OR)")
|
||||
|
||||
#=======================================================================
|
||||
#%% logo plot from sequence
|
||||
|
||||
#################
|
||||
# Plot: LOGOLAS (ED plots)
|
||||
# link: https://github.com/kkdey/Logolas
|
||||
# on all pncA samples: output of mutate.py
|
||||
################
|
||||
library(Logolas)
|
||||
|
||||
seqs = read.csv('~/git//Data/pyrazinamide/output/pnca_msa.txt'
|
||||
, header = FALSE
|
||||
, stringsAsFactors = FALSE)$V1
|
||||
|
||||
|
||||
# my_data: useful!
|
||||
logomaker(seqs, type = "EDLogo", color_type = 'per_symbol'
|
||||
, return_heights = TRUE)
|
||||
logomaker(seqs, type = "Logo", color_type = 'per_symbol')
|
||||
|
||||
#%% end of script
|
||||
#=======================================================================
|
Loading…
Add table
Add a link
Reference in a new issue