logoplot from df and seqs with custom height

This commit is contained in:
Tanushree Tunstall 2020-03-29 17:11:17 +01:00
parent 34a2057d29
commit b5aa524914
3 changed files with 284 additions and 13 deletions

View file

@ -160,7 +160,6 @@ if (max(mcsm_data2$Dis_lig_Ang) < 10){
mcsm_data = mcsm_data2
#!!!!!!!!!!!!!!!!!!!!!
#=======================================================================
# clear variables
rm(mcsm_data2)
@ -173,13 +172,13 @@ head(mcsm_data$Mutationinformation)
orig_col = ncol(mcsm_data)
# get freq count of positions and add to the df
setDT(mcsm_data)[, occurrence := .N, by = .(Position)]
setDT(mcsm_data)[, mut_pos_occurrence := .N, by = .(position)]
cat('Added 1 col: position frequency to see which posn has how many muts'
cat('Added col: position frequency to see which posn has how many muts'
, '\nNo. of cols now', ncol(mcsm_data)
, '\nNo. of cols before: ', orig_col)
pos_count_check = data.frame(mcsm_data$Position, mcsm_data$occurrence)
mut_pos_occurrence = data.frame(mcsm_data$id, mcsm_data$Position, mcsm_data$mut_pos_occurrence)
######################################
# input file2 meta data with AFandOR
@ -205,8 +204,21 @@ str(meta_with_afor)
head(meta_with_afor$Mutationinformation)
meta_with_afor = meta_with_afor[order(meta_with_afor$Mutationinformation),]
head(meta_with_afor$Mutationinformation)
orig_col2 = ncol(meta_with_afor)
# get freq count of positions and add to the df
setDT(meta_with_afor)[, sample_pos_occurrence := .N, by = .(Position)]
cat('Added col: position frequency of samples to check'
,'how many samples correspond to a partiulcar posn associated with muts'
, '\nNo. of cols now', ncol(meta_with_afor)
, '\nNo. of cols before: ', orig_col2)
sample_pos_occurrence = data.frame(meta_with_afor$id, meta_with_afor$position, meta_with_afor$sample_pos_occurrence)
#=======================================================================
cat('Begin merging dfs with NAs',
cat('Begin merging dfs with NAs'
, '\n===============================================================')
###########################
@ -315,7 +327,7 @@ if (identical(sum(is.na(merged_df3$OR))
#=======================================================================
#%% merging without NAs
cat('Begin merging dfs without NAs',
cat('Begin merging dfs without NAs'
, '\n===============================================================')
cat('Merging dfs without any NAs: big df (1-many relationship b/w id & mut)'
@ -378,7 +390,7 @@ if(nrow(merged_df3_comp) == nrow(merged_df3)){
#*************************
# clear variables
rm(mcsm_data, meta_with_afor, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, orig_col, outdir)
rm(pos_count_check)
rm(mut_pos_occurrence)
#%% end of script
#=======================================================================

View file

@ -155,14 +155,17 @@ head(mcsm_data$Mutationinformation)
orig_col = ncol(mcsm_data)
# get freq count of positions and add to the df
setDT(mcsm_data)[, occurrence := .N, by = .(Position)]
setDT(mcsm_data)[, mut_pos_occurrence := .N, by = .(Position)]
cat('Added 1 col: position frequency to see which posn has how many muts'
cat('Added col: position frequency of muts to see which posn has how many muts'
, '\nNo. of cols now', ncol(mcsm_data)
, '\nNo. of cols before: ', orig_col)
pos_count_check = data.frame(mcsm_data$Position, mcsm_data$occurrence)
mut_pos_occurrence = data.frame(mcsm_data$Mutationinformation
, mcsm_data$Position
, mcsm_data$mut_pos_occurrence)
colnames(mut_pos_occurrence) = c('Mutationinformation', 'position', 'mut_pos_occurrence')
#######################################
# input file 2: meta data with AFandOR
#######################################
@ -201,8 +204,25 @@ str(meta_with_afor)
head(meta_with_afor$Mutationinformation)
meta_with_afor = meta_with_afor[order(meta_with_afor$Mutationinformation),]
head(meta_with_afor$Mutationinformation)
orig_col2 = ncol(meta_with_afor)
# get freq count of positions and add to the df
setDT(meta_with_afor)[, sample_pos_occurrence := .N, by = .(position)]
cat('Added col: position frequency of samples to check'
,'how many samples correspond to a partiulcar posn associated with muts'
, '\nNo. of cols now', ncol(meta_with_afor)
, '\nNo. of cols before: ', orig_col2)
sample_pos_occurrence = data.frame(meta_with_afor$id
, meta_with_afor$mutation
, meta_with_afor$Mutationinformation
, meta_with_afor$position
, meta_with_afor$sample_pos_occurrence)
colnames(sample_pos_occurrence) = c('id', 'mutation', 'Mutationinformation', 'position', 'sample_pos_occurrence')
#=======================================================================
cat('Begin merging dfs with NAs',
cat('Begin merging dfs with NAs'
, '\n===============================================================')
###########################
@ -313,7 +333,7 @@ if (identical(sum(is.na(merged_df3$OR))
#=======================================================================
#%% merging without NAs
cat('Begin merging dfs without NAs',
cat('Begin merging dfs without NAs'
, '\n===============================================================')
cat('Merging dfs without any NAs: big df (1-many relationship b/w id & mut)'
@ -414,10 +434,28 @@ for (i in outvars){
# alternate way to replace with implicit loop
# FIXME
#sapply(outvars, function(x, y) write.csv(get(outvars), paste0(outdir, '/', outvars, '.csv')))
#=======================================================================
#%% merging mut_pos_occurrence and sample_pos_occurence
# FIXME
#cat('Merging dfs with positional frequency from mcsm and meta_data'
# , '\nNcol in mut_pos_occurrence:', ncol(mut_pos_occurrence)
# , '\nncol in sample_pos_occurence:', ncol(sample_pos_occurrence)
# ,'\nlinking col:', intersect(colnames(sample_pos_occurrence), colnames(mut_pos_occurrence))
# ,'\nfilename: merged_df4')
#merged_df4 = merge(sample_pos_occurrence, mut_pos_occurrence
# , by = 'position'
# , all = T)
#out_filename4 = 'mut_and_sample_freq.csv'
#outfile4 = paste0(outdir, '/', out_filename4)
#*************************
# clear variables
rm(mcsm_data, meta_with_afor, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, orig_col, outdir)
rm(pos_count_check)
rm(mut_pos_occurrence, sample_pos_occurrence)
#rm(merged_df4)
#%% end of script
#=======================================================================

221
plotting_test/logo_plot.R Normal file
View file

@ -0,0 +1,221 @@
#=======================================================================
# Task: To generate a logo plot or bar plot but coloured
# aa properties.
# step1: read mcsm file and OR file
# step2: plot wild type positions
# step3: plot mutants per position coloured by aa properties
# step4: make the size of the letters/bars prop to OR if you can!
# useful links
# https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
# https://omarwagih.github.io/ggseqlogo/
# https://kkdey.github.io/Logolas-pages/workflow.html
# A new sequence logo plot to highlight enrichment and depletion.
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288878/
#very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
#=======================================================================
#%% specify curr dir
getwd()
setwd('~/git/LSHTM_analysis/plotting_test/')
getwd()
#=======================================================================
#%% load packages
# header file
header_dir = '~/git/LSHTM_analysis/'
source(paste0(header_dir, '/', 'my_header.R'))
#=======================================================================
#%% variable assignment: input and output paths & filenames
drug = 'pyrazinamide'
gene = 'pncA'
gene_match = paste0(gene,'_p.')
cat(gene_match)
#===========
# data dir
#===========
datadir = paste0('~/git/Data')
#===========
# input
#===========
# source R script 'combining_two_df.R'
#indir = paste0(datadir, '/', drug, '/', 'output') # reading files
indir = '../meta_data_analysis' # sourcing R script
in_filename = 'combining_df_ps.R'
infile = paste0(indir, '/', in_filename)
cat(paste0('Input is a R script: ', '\'', infile, '\'')
, '\n========================================================')
#===========
# output
#===========
# 1) lineage dist of all muts
outdir = paste0('~/git/Data', '/', drug, '/', 'output/plots') #same as indir
#cat('Output dir: ', outdir, '\n')
#file_type = '.svg'
#out_filename1 = paste0(tolower(gene), '_lineage_dist_ps', file_type)
#outfile1 = paste0(outdir, '/', out_filename1)
#cat(paste0('Output plot1 :', outfile1)
# , '\n========================================================')
#%% end of variable assignment for input and output files
#=======================================================================
##%% read input file
cat('Reading input file(sourcing R script):', in_filename)
source(infile)
#==========================
# This will return:
# df with NA for pyrazinamide:
# merged_df2
# merged_df3
# df without NA for pyrazinamide:
# merged_df2_comp
# merged_df3_comp
#===========================
###########################
# Data for plots
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
# using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available, hence use df with NA
# This will the first plotting df
# Then subset this to extract dr muts only (second plottig df)
###########################
#%%%%%%%%%%%%%%%%%%%%%%%%%
# uncomment as necessary
# REASSIGNMENT
#my_data = merged_df2
#my_data = merged_df2_comp
#my_data = merged_df3
my_data = merged_df3_comp
#%%%%%%%%%%%%%%%%%%%%%%%%%%
# delete variables not required
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_data)
str(my_data)
c1 = unique(my_data$Position)
nrow(my_data)
cat('No. of rows in my_data:', nrow(my_data)
, '\nDistinct positions corresponding to snps:', length(c1)
, '\n===========================================================')
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME: Think and decide what you want to remove
# mut_pos_occurence < 1 or sample_pos_occurrence <1
# get freq count of positions so you can subset freq<1
require(data.table)
#setDT(my_data)[, mut_pos_occurrence := .N, by = .(Position)] #265, 14
#extract freq_pos>1
#my_data_snp = my_data[my_data$occurrence!=1,]
#u = unique(my_data_snp$Position) #73
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT to prevent changing code
my_data_snp = my_data
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#=======================================================================
#%% logo plots from dataframe
#############
# PLOTS: ggseqlogo with custom height
# https://omarwagih.github.io/ggseqlogo/
#############
#require(ggplot2)
#require(tidyverse)
library(ggseqlogo)
foo = my_data_snp[, c("Position", "Mutant_type","ratioDUET", "OR"
, "mut_prop_polarity", "mut_prop_water") ]
# log10OR
# FIXME: at the source script (when calculating AFandOR)
my_data_snp$log10or = log10(my_data_snp$OR)
bar = my_data_snp[, c('Position', 'Mutant_type', 'OR', 'logor', 'log10or')]
bar_or = my_data_snp[, c('Position', 'Mutant_type', 'OR')]
wide_df_or <- bar_or %>% spread(Position, OR, fill = 0)
wide_df_or = as.matrix(wide_df_or)
rownames(wide_df_or) = wide_df_or[,1]
wide_df_or = wide_df_or[,-1]
# custom height (OR) logo plot: yayy works
ggseqlogo(wide_df_or, method='custom', seq_type='aa') + ylab('my custom height') +
theme(legend.position = "bottom"
, axis.text.x = element_text(size = 11
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = 15
, angle = 0
, hjust = 1
, vjust = 0))+
labs(title = "AA logo plot"
, x = "Wild-type Position"
, y = "OR")
#%% end of logo plot with OR as height
#=======================================================================
# extracting data with log10OR
bar_logor = my_data_snp[, c('Position', 'Mutant_type', 'log10or')]
wide_df_logor <- bar_logor %>% spread(Position, log10or, fill = 0)
wide_df_logor = as.matrix(wide_df_logor)
rownames(wide_df_logor) = wide_df_logor[,1]
wide_df_logor = wide_df_logor[,-1]
# custom height (log10OR) logo plot: yayy works
ggseqlogo(wide_df_logor, method='custom', seq_type='aa') + ylab('my custom height') +
theme(legend.position = "bottom"
, axis.text.x = element_text(size = 11
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = 15
, angle = 0
, hjust = 1
, vjust = 0))+
labs(title = "AA logo plot"
, x = "Wild-type Position"
, y = "Log10(OR)")
#=======================================================================
#%% logo plot from sequence
#################
# Plot: LOGOLAS (ED plots)
# link: https://github.com/kkdey/Logolas
# on all pncA samples: output of mutate.py
################
library(Logolas)
seqs = read.csv('~/git//Data/pyrazinamide/output/pnca_msa.txt'
, header = FALSE
, stringsAsFactors = FALSE)$V1
# my_data: useful!
logomaker(seqs, type = "EDLogo", color_type = 'per_symbol'
, return_heights = TRUE)
logomaker(seqs, type = "Logo", color_type = 'per_symbol')
#%% end of script
#=======================================================================