saving work
This commit is contained in:
parent
d812835713
commit
b5777a17c9
3 changed files with 103 additions and 22 deletions
|
@ -77,6 +77,7 @@ import re
|
|||
#####################################
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
|
||||
|
||||
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
|
@ -87,6 +88,9 @@ scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
|||
, 'jcc' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
skf_cv = StratifiedKFold(n_splits = 10
|
||||
#, shuffle = False, random_state= None)
|
||||
, shuffle = True,**rs)
|
||||
|
@ -95,9 +99,6 @@ rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
|||
, n_repeats = 3
|
||||
, **rs)
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
|
||||
###############################################################################
|
||||
def fsgs_rfecv(input_df
|
||||
, target
|
||||
|
@ -109,7 +110,10 @@ def fsgs_rfecv(input_df
|
|||
, custom_fs = RFECV(DecisionTreeClassifier(**rs) , cv = skf_cv, scoring = 'matthews_corrcoef')
|
||||
, cv_method = skf_cv
|
||||
, var_type = ['numerical', 'categorical' , 'mixed']
|
||||
, resampling_type = 'none'
|
||||
, verbose = 3
|
||||
, random_state = 42
|
||||
, n_jobs = 10
|
||||
):
|
||||
'''
|
||||
returns
|
||||
|
@ -120,6 +124,10 @@ def fsgs_rfecv(input_df
|
|||
optimised/selected based on mcc
|
||||
|
||||
'''
|
||||
rs = {'random_state': random_state}
|
||||
njobs = {'n_jobs': n_jobs}
|
||||
|
||||
|
||||
###########################################################################
|
||||
#================================================
|
||||
# Determine categorical and numerical features
|
||||
|
@ -375,6 +383,8 @@ def fsgs_rfecv(input_df
|
|||
output_modelD['train_score (MCC)'] = train_bscore
|
||||
output_modelD['bts_mcc'] = bts_mcc_score
|
||||
output_modelD['train_bts_diff'] = round(train_test_diff,2)
|
||||
output_modelD['resampling'] = resampling_type
|
||||
|
||||
print(output_modelD)
|
||||
|
||||
nlen = len(output_modelD)
|
||||
|
|
|
@ -77,9 +77,6 @@ import re
|
|||
import itertools
|
||||
from sklearn.model_selection import LeaveOneGroupOut
|
||||
#%% GLOBALS
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
|
||||
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
|
@ -146,7 +143,7 @@ def MultModelsCl_logo_skf(input_df
|
|||
, blind_test_df = pd.DataFrame()
|
||||
, blind_test_target = pd.Series(dtype = int)
|
||||
, tts_split_type = "none"
|
||||
, group = 'none'
|
||||
#, group = 'none'
|
||||
|
||||
, resampling_type = 'none' # default
|
||||
, add_cm = True # adds confusion matrix based on cross_val_predict
|
||||
|
@ -188,11 +185,11 @@ def MultModelsCl_logo_skf(input_df
|
|||
, **rs)
|
||||
logo = LeaveOneGroupOut()
|
||||
|
||||
# select CV type:
|
||||
if group == 'none':
|
||||
sel_cv = skf_cv
|
||||
else:
|
||||
sel_cv = logo
|
||||
# # select CV type:
|
||||
# if group == 'none':
|
||||
# sel_cv = skf_cv
|
||||
# else:
|
||||
# sel_cv = logo
|
||||
#======================================================
|
||||
# Determine categorical and numerical features
|
||||
#======================================================
|
||||
|
@ -277,7 +274,7 @@ def MultModelsCl_logo_skf(input_df
|
|||
, input_df
|
||||
, target
|
||||
, cv = sel_cv
|
||||
, groups = group
|
||||
#, groups = group
|
||||
, scoring = scoring_fn
|
||||
, return_train_score = True)
|
||||
#==============================
|
||||
|
@ -306,7 +303,12 @@ def MultModelsCl_logo_skf(input_df
|
|||
cmD = {}
|
||||
|
||||
# Calculate cm
|
||||
y_pred = cross_val_predict(model_pipeline, input_df, target, cv = sel_cv, groups = group, **njobs)
|
||||
y_pred = cross_val_predict(model_pipeline
|
||||
, input_df
|
||||
, target
|
||||
, cv = sel_cv
|
||||
#, groups = group
|
||||
, **njobs)
|
||||
#_tn, _fp, _fn, _tp = confusion_matrix(y_pred, y).ravel() # internally
|
||||
tn, fp, fn, tp = confusion_matrix(y_pred, target).ravel()
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue