Combining dfs for PS and lig in one

This commit is contained in:
Tanushree Tunstall 2020-09-07 14:05:46 +01:00
parent 2ef767f046
commit b4affa0c94
6 changed files with 464 additions and 621 deletions

View file

@ -0,0 +1,193 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: Basic lineage barplot showing numbers
# Output: Basic barplot with lineage samples and mut count
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
source("Header_TT.R")
require(cowplot)
source("combining_dfs_plotting.R")
# should return the following dfs, directories and variables
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir))
cat(paste0("Variables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3))
#=========================
#=======
# output
#=======
or_combined = "or_combined_PS_LIG.svg"
plot_or_combined = paste0(plotdir,"/", or_combined)
or_kin_combined = "or_kin_combined_PS_LIG.svg"
plot_or_kin_combined = paste0(plotdir,"/", or_kin_combined)
#=======================================================================
###########################
# Data for OR and stability plots
# you need merged_df3_comp
# since these are matched
# to allow pairwise corr
###########################
ps_df = merged_df3_comp
lig_df = merged_df3_comp_lig
# Ensure correct data type in columns to plot: should be TRUE
is.numeric(ps_df$or_mychisq)
is.numeric(lig_df$or_mychisq)
# delete variables not required
rm(merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig, my_df_u, my_df_u_lig)
#%% end of section 1
# sanity check: should be <10
if (max(lig_df$ligand_distance) < 10){
print ("Sanity check passed: lig data is <10Ang")
}else{
print ("Error: data should be filtered to be within 10Ang")
}
#############
# Plots: Bubble plot
# x = Position, Y = stability
# size of dots = OR
# col: stability
#############
#-----------------
# Plot 1: DUET vs OR by position as geom_points
#-------------------
my_ats = 20 # axis text size
my_als = 22 # axis label size
# Spelling Correction: made redundant as already corrected at the source
#ps_df$duet_outcome[ps_df$duet_outcome=='Stabilizing'] <- 'Stabilising'
#ps_df$duet_outcome[ps_df$duet_outcome=='Destabilizing'] <- 'Destabilising'
table(ps_df$duet_outcome) ; sum(table(ps_df$duet_outcome))
g1 = ggplot(ps_df, aes(x = factor(position)
, y = duet_scaled))
p1 = g1 +
geom_point(aes(col = duet_outcome
#, size = or_mychisq))+
, size = or_kin)) +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = my_ats
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = my_als)
, axis.title.y = element_text(size = my_als)
, legend.text = element_text(size = my_als)
, legend.title = element_text(size = my_als) ) +
#, legend.key.size = unit(1, "cm")) +
labs(title = ""
, x = "Position"
, y = "DUET(PS)"
, size = "Odds Ratio"
, colour = "DUET Outcome") +
guides(colour = guide_legend(override.aes = list(size=4)))
p1
#-------------------
# generate plot 2: Lig vs OR by position as geom_points
#-------------------
# Spelling Correction: made redundant as already corrected at the source
#lig_df$ligand_outcome[lig_df$ligand_outcome=='Stabilizing'] <- 'Stabilising'
#lig_df$ligand_outcome[lig_df$ligand_outcome=='Destabilizing'] <- 'Destabilising'
table(lig_df$ligand_outcome)
g2 = ggplot(lig_df, aes(x = factor(position)
, y = affinity_scaled))
p2 = g2 +
geom_point(aes(col = ligand_outcome
#, size = or_mychisq))+
, size = or_kin)) +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = my_ats
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = my_als)
, axis.title.y = element_text(size = my_als)
, legend.text = element_text(size = my_als)
, legend.title = element_text(size = my_als) ) +
#, legend.key.size = unit(1, "cm")) +
labs(title = ""
, x = "Position"
, y = "Ligand Affinity"
, size = "Odds Ratio"
, colour = "Ligand Outcome"
) +
guides(colour = guide_legend(override.aes = list(size=4)))
p2
#======================
# combine using cowplot
#======================
svg(plot_or_combined, width = 32, height = 12)
svg(plot_or_kin_combined, width = 32, height = 12)
theme_set(theme_gray()) # to preserve default theme
printFile = cowplot::plot_grid(plot_grid(p1, p2
, ncol = 1
, align = 'v'
, labels = c("", "")
, label_size = my_als+5))
print(printFile)
dev.off()

View file

@ -1,8 +1,4 @@
#!/usr/bin/env Rscript
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
#########################################################
# TASK: To combine struct params and meta data for plotting
# Input csv files:
@ -16,21 +12,22 @@ getwd()
# 3) small combined df including NAs for AF, OR, etc.
# Dim: same as mcsm data
# 4) large combined df excluding NAs
# Dim: dim(#1) - no. of NAs(AF|OR) + 1
# Dim: dim(#1) - na_count_df2
# 5) small combined df excluding NAs
# Dim: dim(#2) - no. of unique NAs - 1
# Dim: dim(#2) - na_count_df3
# This script is sourced from other .R scripts for plotting
#########################################################
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
##########################################################
# Installing and loading required packages
##########################################################
#source("Header_TT.R")
require(data.table)
require(arsenal)
require(compare)
library(tidyverse)
source("Header_TT.R")
#require(data.table)
#require(arsenal)
#require(compare)
#library(tidyverse)
source("plotting_data.R")
# should return the following dfs, directories and variables
@ -53,28 +50,13 @@ cat(paste0("Variables imported:"
, "\nAngstrom symbol:", angstroms_symbol))
# clear excess variable
rm(my_df, upos, dup_muts, my_df_u_lig)
rm(my_df, upos, dup_muts)
#========================================================
#========================================================
#%% variable assignment: input and output paths & filenames
drug = "pyrazinamide"
gene = "pncA"
gene_match = paste0(gene,"_p.")
cat(gene_match)
#=============
# directories
#=============
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
plotdir = paste0("~/git/Data", "/", drug, "/output/plots")
#===========
# input
#===========
#in_file1: output of plotting_data.R
# my_df_u
# infile 2: gene associated meta data
#in_filename_gene_metadata = paste0(tolower(gene), "_meta_data_with_AFandOR.csv")
@ -85,56 +67,22 @@ cat(paste0("Input infile 2:", infile_gene_metadata))
#===========
# output
#===========
# mutations with opposite effects
out_filename_opp_muts = paste0(tolower(gene), "_muts_opp_effects.csv")
outfile_opp_muts = paste0(outdir, "/", out_filename_opp_muts)
# other variables that you can write
# primarily called by other scripts for plotting
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
#%%===============================================================
table(my_df_u$duet_outcome); sum(table(my_df_u$duet_outcome) )
# spelling Correction 1: DUET incase American spelling needed!
#my_df_u$duet_outcome[my_df_u$duet_outcome=="Stabilising"] <- "Stabilizing"
#my_df_u$duet_outcome[my_df_u$duet_outcome=="Destabilising"] <- "Destabilizing"
# spelling Correction 2: Ligand incase American spelling needed!
table(my_df_u$ligand_outcome); sum(table(my_df_u$ligand_outcome) )
#my_df_u$ligand_outcome[my_df_u$ligand_outcome=="Stabilising"] <- "Stabilizing"
#my_df_u$ligand_outcome[my_df_u$ligand_outcome=="Destabilising"] <- "Destabilizing"
# muts with opposing effects on protomer and ligand stability
table(my_df_u$duet_outcome != my_df_u$ligand_outcome)
changes = my_df_u[which(my_df_u$duet_outcome != my_df_u$ligand_outcome),]
# sanity check: redundant, but uber cautious!
dl_i = which(my_df_u$duet_outcome != my_df_u$ligand_outcome)
ld_i = which(my_df_u$ligand_outcome != my_df_u$duet_outcome)
cat("Identifying muts with opposite stability effects")
if(nrow(changes) == (table(my_df_u$duet_outcome != my_df_u$ligand_outcome)[[2]]) & identical(dl_i,ld_i)) {
cat("PASS: muts with opposite effects on stability and affinity correctly identified"
, "\nNo. of such muts: ", nrow(changes))
}else {
cat("FAIL: unsuccessful in extracting muts with changed stability effects")
}
#***************************
# write file: changed muts
write.csv(changes, outfile_opp_muts)
cat("Finished writing file for muts with opp effects:"
, "\nFilename: ", outfile_opp_muts
, "\nDim:", dim(changes))
# clear variables
rm(out_filename_opp_muts, outfile_opp_muts)
rm(changes, dl_i, ld_i)
# count na in each column
na_count = sapply(my_df_u, function(y) sum(length(which(is.na(y))))); na_count
df_ncols = ncol(my_df_u)
###########################
# 2: Read file: <gene>_meta data.csv
@ -146,8 +94,6 @@ gene_metadata <- read.csv(infile_gene_metadata
, header = T)
cat("Dim:", dim(gene_metadata))
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME: remove
# counting NAs in AF, OR cols:
if (identical(sum(is.na(my_df_u$or_mychisq))
, sum(is.na(my_df_u$pval_fisher))
@ -176,31 +122,24 @@ if (identical(sum(is.na(my_df_u$or_kin))
, "\nNA in AF:", sum(is.na(my_df_u$af_kin)))
}
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# clear variables
rm(in_filename_gene_metadata, infile_gene_metadata)
str(gene_metadata)
###################################################################
# combining: PS
###################################################################
# sort by position (same as my_df)
# earlier it was mutationinformation
#head(gene_metadata$mutationinformation)
#gene_metadata = gene_metadata[order(gene_metadata$mutationinformation),]
##head(gene_metadata$mutationinformation)
head(gene_metadata$position)
gene_metadata = gene_metadata[order(gene_metadata$position),]
head(gene_metadata$position)
###########################
# Merge 1: two dfs with NA
# merged_df2
###########################
#=========================
# Merge 1: merged_df2
# dfs with NAs in ORs
#=========================
head(my_df_u$mutationinformation)
head(gene_metadata$mutationinformation)
# Find common columns b/w two df
# FIXME: mutation has empty cell for some muts
merging_cols = intersect(colnames(my_df_u), colnames(gene_metadata))
cat(paste0("Merging dfs with NAs: big df (1-many relationship b/w id & mut)"
@ -214,9 +153,6 @@ table(nchar(my_df_u$wild_type))
table(nchar(my_df_u$mutant_type))
table(nchar(my_df_u$position))
#=============
# merged_df2: gene_metadata + my_df
#==============
# all.y because x might contain non-structural positions!
merged_df2 = merge(x = gene_metadata
, y = my_df_u
@ -226,9 +162,7 @@ merged_df2 = merge(x = gene_metadata
cat("Dim of merged_df2: ", dim(merged_df2))
head(merged_df2$position)
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME: count how many unique muts have entries in meta data
# should PASS
# sanity check
cat("Checking nrows in merged_df2")
if(nrow(gene_metadata) == nrow(merged_df2)){
cat("PASS: nrow(merged_df2) = nrow (gene associated gene_metadata)"
@ -243,47 +177,23 @@ if(nrow(gene_metadata) == nrow(merged_df2)){
meta_muts_u = unique(gene_metadata$mutationinformation)
# find the index where it differs
unique(meta_muts_u[! meta_muts_u %in% merged_muts_u])
quit()
}
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# sort by position
head(merged_df2$position)
merged_df2 = merged_df2[order(merged_df2$position),]
head(merged_df2$position)
merged_df2v3 = merge(x = gene_metadata
, y = my_df_u
, by = merging_cols
, all = T)
merged_df2v2 = merge(x = gene_metadata
, y = my_df_u
, by = merging_cols
, all.x = T)
#!=!=!=!=!=!=!=!
#identical(merged_df2, merged_df2v2)
nrow(merged_df2[merged_df2$position==186,])
#!=!=!=!=!=!=!=!
# should be False
identical(merged_df2, merged_df2v2)
table(merged_df2$position%in%merged_df2v2$position)
#!!!!!!!!!!! check why these differ
#########
# merge 3b (merged_df3):remove duplicated mutations
#=========================
# Merge 2: merged_df3
# dfs with NAs in ORs
#
# Cannot trust lineage, country from this df as the same mutation
# can have many different lineages
# but this should be good for the numerical corr plots
#=========================
# remove duplicated mutations
cat("Merging dfs without NAs: small df (removing muts with no AF|OR associated)"
,"\nCannot trust lineage info from this"
,"\nlinking col: mutationinforamtion"
,"\nfilename: merged_df3")
#==#=#=#=#=#=#
# Cannot trust lineage, country from this df as the same mutation
# can have many different lineages
# but this should be good for the numerical corr plots
#=#=#=#=#=#=#=
merged_df3 = merged_df2[!duplicated(merged_df2$mutationinformation),]
head(merged_df3$position); tail(merged_df3$position) # should be sorted
@ -326,12 +236,10 @@ if ( identical( which(is.na(merged_df2$or_mychisq)), which(is.na(merged_df2$or_k
quit()
}
###########################
# 4: merging two dfs: without NA
###########################
#########
# merge 4a (merged_df2_comp): same as merge 1 but excluding NA
#########
#=========================
# Merge3: merged_df2_comp
# same as merge 1 but excluding NAs from ORs, etc.
#=========================
cat("Merging dfs without any NAs: big df (1-many relationship b/w id & mut)"
,"\nlinking col: Mutationinforamtion"
,"\nfilename: merged_df2_comp")
@ -357,9 +265,12 @@ if ( identical( which(is.na(merged_df2$af)), which(is.na(merged_df2$af_kin))) ){
print('Index mismatch for mychisq and kin ors. Aborting NA ommission')
}
#########
# merge 4b (merged_df3_comp): remove duplicate mutation information
#########
#=========================
# Merge4: merged_df3_comp
# same as merge 2 but excluding NAs from ORs, etc or
# remove duplicate mutation information
#=========================
if ( identical( which(is.na(merged_df3$af)), which(is.na(merged_df3$af_kin))) ){
print('mychisq and kin ors missing indices match. Procedding with omitting NAs')
na_count_df3 = sum(is.na(merged_df3$af))
@ -388,7 +299,6 @@ bar = merged_df3_comp[!duplicated(merged_df3_comp$mutationinformation),]
all.equal(foo, bar)
#summary(comparedf(foo, bar))
#=============== end of combining df
#==============================================================
#################
# OPTIONAL: write ALL 4 output files
@ -416,7 +326,32 @@ all.equal(foo, bar)
# clear variables
rm(foo, bar, gene_metadata
, in_filename_params, infile_params, merging_cols
, in_filename_gene_metadata, infile_gene_metadata
, merged_df2v2, merged_df2v3)
#*************************
#####################################################################
# Combining: LIG
#####################################################################
#============================= end of script
#=========================
# Merges 5-8
#=========================
merged_df2_lig = merged_df2[merged_df2$ligand_distance<10,]
merged_df2_comp_lig = merged_df2_comp[merged_df2_comp$ligand_distance<10,]
merged_df3_lig = merged_df3[merged_df3$ligand_distance<10,]
merged_df3_comp_lig = merged_df3_comp[merged_df3_comp$ligand_distance<10,]
# sanity check
if (nrow(merged_df3_lig) == nrow(my_df_u_lig)){
print("PASS: verified merged_df3_lig")
}else{
cat(paste0('FAIL: nrow mismatch for merged_df3_lig'
, "\nExpected:", nrow(my_df_u_lig)
, "\nGot:", nrow(merged_df3_lig)))
}
#==========================================================================
# end of script
##==========================================================================

View file

@ -1,442 +0,0 @@
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
#########################################################
# TASK: To combine struct params and meta data for plotting
# Input csv files:
# 1) <gene>_all_params.csv
# 2) <gene>_meta_data.csv
# Output:
# 1) muts with opposite effects on stability
# 2) large combined df including NAs for AF, OR,etc
# Dim: same no. of rows as gene associated meta_data_with_AFandOR
# 3) small combined df including NAs for AF, OR, etc.
# Dim: same as mcsm data
# 4) large combined df excluding NAs
# Dim: dim(#1) - no. of NAs(AF|OR) + 1
# 5) small combined df excluding NAs
# Dim: dim(#2) - no. of unique NAs - 1
# This script is sourced from other .R scripts for plotting
#########################################################
##########################################################
# Installing and loading required packages
##########################################################
source("Header_TT.R")
#require(data.table)
#require(arsenal)
#require(compare)
#library(tidyverse)
#%% variable assignment: input and output paths & filenames
drug = "pyrazinamide"
gene = "pncA"
gene_match = paste0(gene,"_p.")
cat(gene_match)
#=============
# directories
#=============
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
#===========
# input
#===========
#in_filename = "mcsm_complex1_normalised.csv"
in_filename_params = paste0(tolower(gene), "_all_params.csv")
infile_params = paste0(outdir, "/", in_filename_params)
cat(paste0("Input file 1:", infile_params) )
# infile 2: gene associated meta data
#in_filename_gene_metadata = paste0(tolower(gene), "_meta_data_with_AFandOR.csv")
in_filename_gene_metadata = paste0(tolower(gene), "_metadata.csv")
infile_gene_metadata = paste0(outdir, "/", in_filename_gene_metadata)
cat(paste0("Input infile 2:", infile_gene_metadata))
#===========
# output
#===========
# mutations with opposite effects
out_filename_opp_muts = paste0(tolower(gene), "_muts_opp_effects.csv")
outfile_opp_muts = paste0(outdir, "/", out_filename_opp_muts)
#%%===============================================================
###########################
# Read file: struct params
###########################
cat("Reading struct params including mcsm:"
, in_filename_params)
mcsm_data = read.csv(infile_params
#, row.names = 1
, stringsAsFactors = F
, header = T)
cat("Input dimensions:", dim(mcsm_data)) #416, 86
# clear variables
rm(in_filename_params, infile_params)
str(mcsm_data)
table(mcsm_data$duet_outcome); sum(table(mcsm_data$duet_outcome) )
# spelling Correction 1: DUET incase American spelling needed!
#mcsm_data$duet_outcome[mcsm_data$duet_outcome=="Stabilising"] <- "Stabilizing"
#mcsm_data$duet_outcome[mcsm_data$duet_outcome=="Destabilising"] <- "Destabilizing"
# checks: should be the same as above
table(mcsm_data$duet_outcome); sum(table(mcsm_data$duet_outcome) )
head(mcsm_data$duet_outcome); tail(mcsm_data$duet_outcome)
# spelling Correction 2: Ligand incase American spelling needed!
table(mcsm_data$ligand_outcome); sum(table(mcsm_data$ligand_outcome) )
#mcsm_data$ligand_outcome[mcsm_data$ligand_outcome=="Stabilising"] <- "Stabilizing"
#mcsm_data$ligand_outcome[mcsm_data$ligand_outcome=="Destabilising"] <- "Destabilizing"
# checks: should be the same as above
table(mcsm_data$ligand_outcome); sum(table(mcsm_data$ligand_outcome) )
head(mcsm_data$ligand_outcome); tail(mcsm_data$ligand_outcome)
# muts with opposing effects on protomer and ligand stability
table(mcsm_data$duet_outcome != mcsm_data$ligand_outcome)
changes = mcsm_data[which(mcsm_data$duet_outcome != mcsm_data$ligand_outcome),]
# sanity check: redundant, but uber cautious!
dl_i = which(mcsm_data$duet_outcome != mcsm_data$ligand_outcome)
ld_i = which(mcsm_data$ligand_outcome != mcsm_data$duet_outcome)
cat("Identifying muts with opposite stability effects")
if(nrow(changes) == (table(mcsm_data$duet_outcome != mcsm_data$ligand_outcome)[[2]]) & identical(dl_i,ld_i)) {
cat("PASS: muts with opposite effects on stability and affinity correctly identified"
, "\nNo. of such muts: ", nrow(changes))
}else {
cat("FAIL: unsuccessful in extracting muts with changed stability effects")
}
#***************************
# write file: changed muts
write.csv(changes, outfile_opp_muts)
cat("Finished writing file for muts with opp effects:"
, "\nFilename: ", outfile_opp_muts
, "\nDim:", dim(changes))
# clear variables
rm(out_filename_opp_muts, outfile_opp_muts)
rm(changes, dl_i, ld_i)
#***************************
# count na in each column
na_count = sapply(mcsm_data, function(y) sum(length(which(is.na(y))))); na_count
# sort by mutationinformation
##mcsm_data = mcsm_data[order(mcsm_data$mutationinformation),]
##head(mcsm_data$mutationinformation)
df_ncols = ncol(mcsm_data)
# REMOVE as this is dangerous due to dup muts
# get freq count of positions and add to the df
#setDT(mcsm_data)[, occurrence := .N, by = .(position)]
#cat("Added 1 col: position frequency to see which posn has how many muts"
# , "\nNo. of cols now", ncol(mcsm_data)
# , "\nNo. of cols before: ", df_ncols)
#pos_count_check = data.frame(mcsm_data$position, mcsm_data$occurrence)
# check duplicate muts
if (length(unique(mcsm_data$mutationinformation)) == length(mcsm_data$mutationinformation)){
cat("No duplicate mutations in mcsm data")
}else{
dup_muts = mcsm_data[duplicated(mcsm_data$mutationinformation),]
dup_muts_nu = length(unique(dup_muts$mutationinformation))
cat(paste0("CAUTION:", nrow(dup_muts), " Duplicate mutations identified"
, "\nOf these, no. of unique mutations are:", dup_muts_nu
, "\nExtracting df with unique mutations only"))
mcsm_data_u = mcsm_data[!duplicated(mcsm_data$mutationinformation),]
}
if (nrow(mcsm_data_u) == length(unique(mcsm_data$mutationinformation))){
cat("Df without duplicate mutations successfully extracted")
} else{
cat("FAIL: could not extract clean df!")
quit()
}
###########################
# 2: Read file: <gene>_meta data.csv
###########################
cat("Reading meta data file:", infile_gene_metadata)
gene_metadata <- read.csv(infile_gene_metadata
, stringsAsFactors = F
, header = T)
cat("Dim:", dim(gene_metadata))
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME: remove
# counting NAs in AF, OR cols:
if (identical(sum(is.na(gene_metadata$OR))
, sum(is.na(gene_metadata$pvalue))
, sum(is.na(gene_metadata$AF)))){
cat("PASS: NA count match for OR, pvalue and AF\n")
na_count = sum(is.na(gene_metadata$AF))
cat("No. of NAs: ", sum(is.na(gene_metadata$OR)))
} else{
cat("FAIL: NA count mismatch"
, "\nNA in OR: ", sum(is.na(gene_metadata$OR))
, "\nNA in pvalue: ", sum(is.na(gene_metadata$pvalue))
, "\nNA in AF:", sum(is.na(gene_metadata$AF)))
}
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# clear variables
rm(in_filename_gene_metadata, infile_gene_metadata)
str(gene_metadata)
# sort by position (same as mcsm_data)
# earlier it was mutationinformation
#head(gene_metadata$mutationinformation)
#gene_metadata = gene_metadata[order(gene_metadata$mutationinformation),]
##head(gene_metadata$mutationinformation)
head(gene_metadata$position)
gene_metadata = gene_metadata[order(gene_metadata$position),]
head(gene_metadata$position)
###########################
# Merge 1: two dfs with NA
# merged_df2
###########################
head(mcsm_data$mutationinformation)
head(gene_metadata$mutationinformation)
# Find common columns b/w two df
merging_cols = intersect(colnames(mcsm_data), colnames(gene_metadata))
cat(paste0("Merging dfs with NAs: big df (1-many relationship b/w id & mut)"
, "\nNo. of merging cols:", length(merging_cols)
, "\nMerging columns identified:"))
print(merging_cols)
#=============
# merged_df2): gene_metadata + mcsm_data
#==============
merged_df2 = merge(x = gene_metadata
, y = mcsm_data
, by = merging_cols
, all.y = T)
cat("Dim of merged_df2: ", dim(merged_df2) #4520, 11
)
head(merged_df2$position)
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME: count how many unique muts have entries in meta data
# sanity check
cat("Checking nrows in merged_df2")
if(nrow(gene_metadata) == nrow(merged_df2)){
cat("nrow(merged_df2) = nrow (gene associated gene_metadata)"
,"\nExpected no. of rows: ",nrow(gene_metadata)
,"\nGot no. of rows: ", nrow(merged_df2))
} else{
cat("nrow(merged_df2)!= nrow(gene associated gene_metadata)"
, "\nExpected no. of rows after merge: ", nrow(gene_metadata)
, "\nGot no. of rows: ", nrow(merged_df2)
, "\nFinding discrepancy")
merged_muts_u = unique(merged_df2$mutationinformation)
meta_muts_u = unique(gene_metadata$mutationinformation)
# find the index where it differs
unique(meta_muts_u[! meta_muts_u %in% merged_muts_u])
}
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# sort by position
head(merged_df2$position)
merged_df2 = merged_df2[order(merged_df2$position),]
head(merged_df2$position)
merged_df2v3 = merge(x = gene_metadata
, y = mcsm_data
, by = merging_cols
, all = T)
merged_df2v2 = merge(x = gene_metadata
, y = mcsm_data
, by = merging_cols
, all.x = T)
#!=!=!=!=!=!=!=!
# COMMENT: used all.y since position 186 is not part of the struc,
# hence doesn"t have a mcsm value
# but 186 is associated with mutation
#!=!=!=!=!=!=!=!
# should be False
identical(merged_df2, merged_df2v2)
table(merged_df2$position%in%merged_df2v2$position)
rm(merged_df2v2)
#!!!!!!!!!!! check why these differ
#########
# merge 3b (merged_df3):remove duplicate mutation information
#########
cat("Merging dfs without NAs: small df (removing muts with no AF|OR associated)"
,"\nCannot trust lineage info from this"
,"\nlinking col: Mutationinforamtion"
,"\nfilename: merged_df3")
#==#=#=#=#=#=#
# Cannot trust lineage, country from this df as the same mutation
# can have many different lineages
# but this should be good for the numerical corr plots
#=#=#=#=#=#=#=
merged_df3 = merged_df2[!duplicated(merged_df2$mutationinformation),]
head(merged_df3$position); tail(merged_df3$position) # should be sorted
# sanity check
cat("Checking nrows in merged_df3")
if(nrow(mcsm_data) == nrow(merged_df3)){
cat("PASS: No. of rows match with mcsm_data"
,"\nExpected no. of rows: ", nrow(mcsm_data)
,"\nGot no. of rows: ", nrow(merged_df3))
} else {
cat("FAIL: No. of rows mismatch"
, "\nNo. of rows mcsm_data: ", nrow(mcsm_data)
, "\nNo. of rows merged_df3: ", nrow(merged_df3))
}
# counting NAs in AF, OR cols in merged_df3
# this is becuase mcsm has no AF, OR cols,
# so you cannot count NAs
if (identical(sum(is.na(merged_df3$OR))
, sum(is.na(merged_df3$pvalue))
, sum(is.na(merged_df3$AF)))){
cat("PASS: NA count match for OR, pvalue and AF\n")
na_count_df3 = sum(is.na(merged_df3$AF))
cat("No. of NAs: ", sum(is.na(merged_df3$OR)))
} else{
cat("FAIL: NA count mismatch"
, "\nNA in OR: ", sum(is.na(merged_df3$OR))
, "\nNA in pvalue: ", sum(is.na(merged_df3$pvalue))
, "\nNA in AF:", sum(is.na(merged_df3$AF)))
}
###########################
# 4: merging two dfs: without NA
###########################
#########
# merge 4a (merged_df2_comp): same as merge 1 but excluding NA
#########
cat("Merging dfs without any NAs: big df (1-many relationship b/w id & mut)"
,"\nlinking col: Mutationinforamtion"
,"\nfilename: merged_df2_comp")
merged_df2_comp = merged_df2[!is.na(merged_df2$AF),]
#merged_df2_comp = merged_df2[!duplicated(merged_df2$mutationinformation),]
# sanity check
cat("Checking nrows in merged_df2_comp")
if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count + 1)){
cat("PASS: No. of rows match"
,"\nDim of merged_df2_comp: "
,"\nExpected no. of rows: ", nrow(merged_df2) - na_count + 1
, "\nNo. of rows: ", nrow(merged_df2_comp)
, "\nNo. of cols: ", ncol(merged_df2_comp))
}else{
cat("FAIL: No. of rows mismatch"
,"\nExpected no. of rows: ", nrow(merged_df2) - na_count + 1
,"\nGot no. of rows: ", nrow(merged_df2_comp))
}
#########
# merge 4b (merged_df3_comp): remove duplicate mutation information
#########
merged_df3_comp = merged_df2_comp[!duplicated(merged_df2_comp$mutationinformation),]
cat("Dim of merged_df3_comp: "
, "\nNo. of rows: ", nrow(merged_df3_comp)
, "\nNo. of cols: ", ncol(merged_df3_comp))
# alternate way of deriving merged_df3_comp
foo = merged_df3[!is.na(merged_df3$AF),]
# compare dfs: foo and merged_df3_com
all.equal(foo, merged_df3)
summary(comparedf(foo, merged_df3))
# sanity check
cat("Checking nrows in merged_df3_comp")
if(nrow(merged_df3_comp) == nrow(merged_df3)){
cat("NO NAs detected in merged_df3 in AF|OR cols"
,"\nNo. of rows are identical: ", nrow(merged_df3))
} else{
if(nrow(merged_df3_comp) == nrow(merged_df3) - na_count_df3) {
cat("PASS: NAs detected in merged_df3 in AF|OR cols"
, "\nNo. of NAs: ", na_count_df3
, "\nExpected no. of rows in merged_df3_comp: ", nrow(merged_df3) - na_count_df3
, "\nGot no. of rows: ", nrow(merged_df3_comp))
}
}
#=============== end of combining df
#*********************
# writing 1 file in the style of a loop: merged_df3
# print(output dir)
#i = "merged_df3"
#out_filename = paste0(i, ".csv")
#outfile = paste0(outdir, "/", out_filename)
#cat("Writing output file: "
# ,"\nFilename: ", out_filename
# ,"\nPath: ", outdir)
#template: write.csv(merged_df3, "merged_df3.csv")
#write.csv(get(i), outfile, row.names = FALSE)
#cat("Finished writing: ", outfile
# , "\nNo. of rows: ", nrow(get(i))
# , "\nNo. of cols: ", ncol(get(i)))
#%% write_output files; all 4 files:
outvars = c("merged_df2"
, "merged_df3"
, "merged_df2_comp"
, "merged_df3_comp")
cat("Writing output files: "
, "\nPath:", outdir)
for (i in outvars){
# cat(i, "\n")
out_filename = paste0(i, ".csv")
# cat(out_filename, "\n")
# cat("getting value of variable: ", get(i))
outfile = paste0(outdir, "/", out_filename)
# cat("Full output path: ", outfile, "\n")
cat("Writing output file:"
,"\nFilename: ", out_filename,"\n")
write.csv(get(i), outfile, row.names = FALSE)
cat("Finished writing: ", outfile
, "\nNo. of rows: ", nrow(get(i))
, "\nNo. of cols: ", ncol(get(i)), "\n")
}
# alternate way to replace with implicit loop
# FIXME
#sapply(outvars, function(x, y) write.csv(get(outvars), paste0(outdir, "/", outvars, ".csv")))
#*************************
# clear variables
rm(mcsm_data, gene_metadata, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, df_ncols, outdir)
rm(pos_count_check)
#============================= end of script

View file

@ -5,27 +5,30 @@ getwd()
#########################################################
# TASK: Basic lineage barplot showing numbers
# Output:
# Output: Basic barplot with lineage samples and mut count
##########################################################
# Installing and loading required packages
##########################################################
source("Header_TT.R")
require(data.table)
source("combining_two_df.R")
#==========================
source("combining_dfs_plotting.R")
# should return the following dfs, directories and variables
# df with NA:
# merged_df2
# merged_df3
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# df without NA:
# merged_df2_comp
# merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# my_df_u
# 9) my_df_u
# 10) my_df_u_lig
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
@ -38,13 +41,16 @@ cat(paste0("Variables imported:"
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of cols:", df_ncols
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3))
#=========================
#===========
# input
#===========
# output of combining_dfs_plotting.R
#=======
# output
#=======
@ -82,15 +88,11 @@ is.factor(my_df$lineage)
# fill = lineage
#============================
table(my_df$lineage)
#****************
# Plot: Lineage Barplot
#****************
as.data.frame(table(my_df$lineage))
#=============
# Data for plots
#=============
# REASSIGNMENT
df <- my_df
@ -111,18 +113,7 @@ sel_lineages = c("lineage1"
#, "lineage7"
)
df_lin = subset(df, subset = lineage %in% sel_lineages )
#FIXME; add sanity check for numbers.
# Done this manually
############################################################
#########
# Data for barplot: Lineage barplot
# to show total samples and number of unique mutations
# within each linege
##########
df_lin = subset(df, subset = lineage %in% sel_lineages)
# Create df with lineage inform & no. of unique mutations
# per lineage and total samples within lineage
@ -193,7 +184,7 @@ printFile = g + geom_bar(stat = "identity"
, axis.title.y = element_text(size = my_als
, colour = 'black')
, legend.position = "top"
, legend.text = element_text(size = my_als) +
, legend.text = element_text(size = my_als)) +
#geom_text() +
geom_label(aes(label = value)
, size = 5
@ -212,7 +203,7 @@ printFile = g + geom_bar(stat = "identity"
, name=''
, labels=c('Mutations', 'Total Samples')) +
scale_x_discrete(breaks = c('lineage1', 'lineage2', 'lineage3', 'lineage4')
, labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4')))
, labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4'))
print(printFile)
dev.off()

View file

@ -0,0 +1,71 @@
#=============
# merged_df2
#=============
----------------
# no. of samples
----------------
Var1 Freq
1 8
2 lineage1 144
3 lineage1;lineage2 3
4 lineage1;lineage4 4
5 lineage2 1886
6 lineage2;lineage4 19
7 lineage3 190
8 lineage3;lineage4 11
9 lineage4 2213
10 lineage4;lineage6 1
11 lineage4;lineage7 1
12 lineage4;lineageBOV 1
13 lineage5 31
14 lineage6 9
15 lineage7 3
16 lineageBOV 392
----------------
# no. of nsSNPs
----------------
sel_lineages num_snps_u total_samples
1 lineage1 74 144
2 lineage2 277 1886
3 lineage3 104 190
4 lineage4 311 2213
5 lineage5 18 31
6 lineage6 8 9
7 lineage7 1 3
#=============
# merged_df2_comp
#=============
----------------
# no. of samples
----------------
Var1 Freq
1 3
2 lineage1 108
3 lineage1;lineage2 2
4 lineage1;lineage4 2
5 lineage2 1497
6 lineage2;lineage4 13
7 lineage3 154
8 lineage3;lineage4 3
9 lineage4 1846
10 lineage4;lineageBOV 1
11 lineage5 12
12 lineage6 2
13 lineageBOV 36
----------------
# no. of nsSNPs
----------------
sel_lineages num_snps_u total_samples
1 lineage1 42 108
2 lineage2 141 1497
3 lineage3 75 154
4 lineage4 148 1846
5 lineage5 9 12
6 lineage6 2 2
7 lineage7 0 0

View file

@ -0,0 +1,95 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: To write muts with opposite effects on
# protomer and ligand stability
#########################################################
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
source("plotting_data.R")
# should return the following dfs, directories and variables
# my_df
# my_df_u
# my_df_u_lig
# dup_muts
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir))
cat(paste0("Variables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nLength of upos:", length(upos)
, "\nAngstrom symbol:", angstroms_symbol))
# clear excess variable
rm(my_df, upos, dup_muts)
#========================================================
#===========
# input
#===========
#in_file1: output of plotting_data.R
# my_df_u
# output
#===========
# mutations with opposite effects
out_filename_opp_muts = paste0(tolower(gene), "_muts_opp_effects.csv")
outfile_opp_muts = paste0(outdir, "/", out_filename_opp_muts)
#%%===============================================================
# spelling Correction 1: DUET incase American spelling needed!
table(my_df_u$duet_outcome); sum(table(my_df_u$duet_outcome) )
#my_df_u$duet_outcome[my_df_u$duet_outcome=="Stabilising"] <- "Stabilizing"
#my_df_u$duet_outcome[my_df_u$duet_outcome=="Destabilising"] <- "Destabilizing"
# spelling Correction 2: Ligand incase American spelling needed!
table(my_df_u$ligand_outcome); sum(table(my_df_u$ligand_outcome) )
#my_df_u$ligand_outcome[my_df_u$ligand_outcome=="Stabilising"] <- "Stabilizing"
#my_df_u$ligand_outcome[my_df_u$ligand_outcome=="Destabilising"] <- "Destabilizing"
# muts with opposing effects on protomer and ligand stability
table(my_df_u$duet_outcome != my_df_u$ligand_outcome)
changes = my_df_u[which(my_df_u$duet_outcome != my_df_u$ligand_outcome),]
# sanity check: redundant, but uber cautious!
dl_i = which(my_df_u$duet_outcome != my_df_u$ligand_outcome)
ld_i = which(my_df_u$ligand_outcome != my_df_u$duet_outcome)
cat("Identifying muts with opposite stability effects")
if(nrow(changes) == (table(my_df_u$duet_outcome != my_df_u$ligand_outcome)[[2]]) & identical(dl_i,ld_i)) {
cat("PASS: muts with opposite effects on stability and affinity correctly identified"
, "\nNo. of such muts: ", nrow(changes))
}else {
cat("FAIL: unsuccessful in extracting muts with changed stability effects")
}
#==========================
# write file: changed muts
#==========================
write.csv(changes, outfile_opp_muts)
cat("Finished writing file for muts with opp effects:"
, "\nFilename: ", outfile_opp_muts
, "\nDim:", dim(changes))
# clear variables
rm(out_filename_opp_muts, outfile_opp_muts)
rm(changes, dl_i, ld_i)
# count na in each column
na_count = sapply(my_df_u, function(y) sum(length(which(is.na(y))))); na_count
df_ncols = ncol(my_df_u)
#===================================== end of script