optimised run_7030.py to generate ouput from dict now that the processfunction and parameter dicts have been added

This commit is contained in:
Tanushree Tunstall 2022-06-24 15:40:18 +01:00
parent 7dc7e25016
commit b37a950fec
12 changed files with 180 additions and 128408 deletions

View file

@ -9,6 +9,8 @@ Created on Mon Jun 20 13:05:23 2022
import re
import argparse
import os, sys
import collections
# gene = 'pncA'
# drug = 'pyrazinamide'
#total_mtblineage_uc = 8
@ -25,6 +27,7 @@ import os, sys
###############################################################################
homedir = os.path.expanduser("~")
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml')
###############################################################################
#==================
# Import data
@ -54,79 +57,70 @@ outdir_ml = outdir + 'ml/tts_7030/'
print('\nOutput directory:', outdir_ml)
outFile_wf = outdir_ml + gene.lower() + '_baselineC_' + OutFile_suffix + '.csv'
outFile_lf = outdir_ml + gene.lower() + '_baselineC_ext_' + OutFile_suffix + '.csv'
#outFile_lf = outdir_ml + gene.lower() + '_baselineC_ext_' + OutFile_suffix + '.csv'
#%% Running models ############################################################
print('\n#####################################################################\n'
, '\nRunning ML analysis: feature groups '
, '\nStarting--> Running ML analysis: Baseline modes (No FS)'
, '\nGene name:', gene
, '\nDrug name:', drug)
, '\nDrug name:', drug
, '\n#####################################################################\n')
fooD = {'baseline_paramD': {
'input_df': X
, 'target': y
, 'var_type': 'mixed'
, 'resampling_type': 'none'}
,
'smnc_paramD': {'input_df': X_smnc
, 'target': y_smnc
, 'var_type': 'mixed'
, 'resampling_type': 'smnc'}
}
paramD = {
'baseline_paramD': { 'input_df' : X
, 'target' : y
, 'var_type' : 'mixed'
, 'resampling_type': 'none'}
, 'smnc_paramD': { 'input_df' : X_smnc
, 'target' : y_smnc
, 'var_type' : 'mixed'
, 'resampling_type' : 'smnc'}
, 'ros_paramD': { 'input_df' : X_ros
, 'target' : y_ros
, 'var_type' : 'mixed'
, 'resampling_type' : 'ros'}
barD = {}
for k, v in fooD.items():
#print(k)
print(fooD[k])
scores_7030D = MultModelsCl(**fooD[k]
, 'rus_paramD' : { 'input_df' : X_rus
, 'target' : y_rus
, 'var_type' : 'mixed'
, 'resampling_type' : 'rus'}
, 'rouC_paramD' : { 'input_df' : X_rouC
, 'target' : y_rouC
, 'var_type' : 'mixed'
, 'resampling_type' : 'rouC'}
}
# Initial run to get the dict containing CV, BT and metadata DFs
mmD = {}
for k, v in paramD.items():
# print(fooD[k])
scores_7030D = MultModelsCl(**paramD[k]
, tts_split_type = tts_split_7030
, skf_cv = skf_cv
, blind_test_df = X_bts
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
barD[k] = scores_7030D
, add_yn = True
, return_formatted_output = True)
mmD[k] = scores_7030D
ros_paramD = {input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, resampling_type = 'smnc'}
rus_paramD = {input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, resampling_type = 'rus'}
rouC_paramD = {input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, resampling_type = 'rouC'}
#====
scores_7030D = MultModelsCl(**rouC_paramD
, tts_split_type = tts_split_7030
, skf_cv = skf_cv
, blind_test_df = X_bts
, blind_test_target = y_bts
, add_cm = True
, add_yn = True)
###############################################################################
###############################################################################
#%% COMBINING all dfs: WF and LF
# https://stackoverflow.com/questions/39862654/pandas-concat-of-multiple-data-frames-using-only-common-columns
for k, v in mmD.items():
out_wf_7030 = pd.concat(mmD, ignore_index = True)
print('\n######################################################################'
, '\nEnd--> Successfully generated output DF for Multiple classifiers (baseline models)'
, '\nGene:', gene.lower()
, '\nDrug:', drug
, '\noutput file:', outFile_wf
, '\nDim of output:', out_wf_7030.shape
, '\n######################################################################')
###############################################################################
#====================
# Write output file
#====================
#combined_baseline_wf.to_csv(outFile_wf, index = False)
#print('\nFile successfully written:', outFile_wf)
out_wf_7030.to_csv(outFile_wf, index = False)
print('\nFile successfully written:', outFile_wf)
###############################################################################