added cm run for logo_skf for actual data

This commit is contained in:
Tanushree Tunstall 2022-07-02 16:57:11 +01:00
parent 9071a87056
commit b2d0b827ad
4 changed files with 56 additions and 124 deletions

View file

@ -98,13 +98,14 @@ skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True, random_state = 42)
# COMPLETE data: No tts_split
########################################################################
#%%
def CMLogoSkf(combined_df
def CMLogoSkf(cm_input_df
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
, bts_genes = ["embb", "katg", "rpob", "pnca", "gid"]
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
, target_var = 'dst_mode'
, gene_group = 'gene_name'
, std_gene_omit = []
, file_suffix = ""
):
for bts_gene in bts_genes:
@ -128,16 +129,23 @@ def CMLogoSkf(combined_df
, '\nOmitted genes:', tr_gene_omit
, '\nBlind test gene:', bts_gene)
print('\nDim of data:', cm_input_df.shape)
tts_split_type = "logo_skf_BT_" + bts_gene
outFile = outdir + str(n_tr_genes+1) + "genes_" + tts_split_type + ".csv"
# if len(file_suffix) > 0:
# file_suffix = '_' + file_suffix
# else:
# file_suffix = file_suffix
outFile = outdir + str(n_tr_genes+1) + "genes_" + tts_split_type + '_' + file_suffix + ".csv"
print(outFile)
#-------
# training
#------
cm_training_df = combined_df[~combined_df['gene_name'].isin(tr_gene_omit)]
cm_training_df = cm_input_df[~cm_input_df['gene_name'].isin(tr_gene_omit)]
cm_X = cm_training_df.drop(cols_to_drop, axis=1, inplace=False)
#cm_y = cm_training_df.loc[:,'dst_mode']
@ -156,7 +164,7 @@ def CMLogoSkf(combined_df
#---------------
# BTS: genes
#---------------
cm_test_df = combined_df[combined_df['gene_name'].isin([bts_gene])]
cm_test_df = cm_input_df[cm_input_df['gene_name'].isin([bts_gene])]
cm_bts_X = cm_test_df.drop(cols_to_drop, axis = 1, inplace = False)
#cm_bts_y = cm_test_df.loc[:, 'dst_mode']
@ -165,31 +173,40 @@ def CMLogoSkf(combined_df
print('\nTEST data dim:', cm_bts_X.shape
, '\nTEST Target dim:', cm_bts_y.shape)
print("Running Multiple models on LOGO with SKF")
# #%%:Running Multiple models on LOGO with SKF
# cD3_v2 = MultModelsCl_logo_skf(input_df = cm_X
# , target = cm_y
# #, group = 'none'
# , sel_cv = skf_cv
#%%:Running Multiple models on LOGO with SKF
cD3_v2 = MultModelsCl_logo_skf(input_df = cm_X
, target = cm_y
#, group = 'none'
, sel_cv = skf_cv
# , blind_test_df = cm_bts_X
# , blind_test_target = cm_bts_y
, blind_test_df = cm_bts_X
, blind_test_target = cm_bts_y
# , tts_split_type = tts_split_type
, tts_split_type = tts_split_type
# , resampling_type = 'none' # default
# , add_cm = True
# , add_yn = True
# , var_type = 'mixed'
, resampling_type = 'none' # default
, add_cm = True
, add_yn = True
, var_type = 'mixed'
# , run_blind_test = True
# , return_formatted_output = True
# , random_state = 42
# , n_jobs = os.cpu_count() # the number of jobs should equal the number of CPU cores
# )
, run_blind_test = True
, return_formatted_output = True
, random_state = 42
, n_jobs = os.cpu_count() # the number of jobs should equal the number of CPU cores
)
# cD3_v2.to_csv(outFile)
cD3_v2.to_csv(outFile)
#%% RUN
#===============
# Complete Data
#===============
#CMLogoSkf(cm_input_df = combined_df,file_suffix = "complete")
#CMLogoSkf(cm_input_df = combined_df, std_gene_omit=['alr'], file_suffix = "complete")
#%%
#CMLogoSkf(combined_df)
CMLogoSkf(combined_df, std_gene_omit=['alr'])
#===============
# Actual Data
#===============
CMLogoSkf(cm_input_df = combined_df_actual, file_suffix = "actual")
CMLogoSkf(cm_input_df = combined_df_actual, std_gene_omit=['alr'], file_suffix = "actual")

View file

@ -1,89 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 29 20:29:36 2022
@author: tanu
"""
import sys, os
import pandas as pd
import numpy as np
import re
###############################################################################
homedir = os.path.expanduser("~")
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
sys.path
###############################################################################
outdir = homedir + '/git/LSHTM_ML/output/combined/'
#====================
# Import ML functions
#====================
#from MultClfs import *
#from MultClfs_logo_skf import *
from MultClfs_logo_skf_split import *
from GetMLData import *
from SplitTTS import *
# Input data
from ml_data_combined import *
###############################################################################
print('\nUsing data with 5 genes:', len(cm_input_df5))
###############################################################################
split_types = ['70_30', '80_20', 'sl']
split_data_types = ['actual', 'complete']
for split_type in split_types:
for data_type in split_data_types:
out_filename = outdir + 'cm_' + split_type + '_' + data_type + '.csv'
print(out_filename)
tempD = split_tts(cm_input_df5
, data_type = data_type
, split_type = split_type
, oversampling = True
, dst_colname = 'dst'
, target_colname = 'dst_mode'
, include_gene_name = True
)
paramD = {
'baseline_paramD': { 'input_df' : tempD['X']
, 'target' : tempD['y']
, 'var_type' : 'mixed'
, 'resampling_type' : 'none'}
, 'smnc_paramD' : { 'input_df' : tempD['X_smnc']
, 'target' : tempD['y_smnc']
, 'var_type' : 'mixed'
, 'resampling_type' : 'smnc'}
, 'ros_paramD' : { 'input_df' : tempD['X_ros']
, 'target' : tempD['y_ros']
, 'var_type' : 'mixed'
, 'resampling_type' : 'ros'}
, 'rus_paramD' : { 'input_df' : tempD['X_rus']
, 'target' : tempD['y_rus']
, 'var_type' : 'mixed'
, 'resampling_type' : 'rus'}
, 'rouC_paramD' : { 'input_df' : tempD['X_rouC']
, 'target' : tempD['y_rouC']
, 'var_type' : 'mixed'
, 'resampling_type' : 'rouC'}
}
mmDD = {}
for k, v in paramD.items():
scoresD = MultModelsCl_logo_skf(**paramD[k]
XXXXXXXXXXXXXXXXXXXXXXX
mmDD[k] = scoresD
# Extracting the dfs from within the dict and concatenating to output as one df
for k, v in mmDD.items():
out_wf= pd.concat(mmDD, ignore_index = True)
out_wf_f = out_wf.sort_values(by = ['resampling', 'source_data', 'MCC'], ascending = [True, True, False], inplace = False)
out_wf_f.to_csv(('/home/tanu/git/Data/ml_combined/genes/'+out_filename), index = False)

View file

@ -71,4 +71,12 @@ else:
omit_gene_alr = ['alr']
cm_input_df5 = combined_df[~combined_df['gene_name'].isin(omit_gene_alr)]
#%% COMPLETE data
combined_df['dst'].isna().sum()
combined_df['dst'].value_counts().sum()
combined_df_actual = combined_df[~combined_df['dst'].isna()]
##############################################################################

View file

@ -48,11 +48,7 @@ for gene, drug in ml_gene_drugD.items():
, '\nDrug:', drug)
gene_low = gene.lower()
gene_dataD[gene_low] = getmldata(gene, drug
, data_combined_model = False # this means it doesn't include 'gene_name' as a feauture as a single gene-target shouldn't have it.
, use_or = False
, omit_all_genomic_features = False
, write_maskfile = False
, write_outfile = False)
, **combined_model_paramD)
for split_type in split_types:
for data_type in split_data_types: