tidied combining plot scripts
This commit is contained in:
parent
e7f2a3aada
commit
b1e4dcd376
2 changed files with 808 additions and 0 deletions
385
meta_data_analysis/combining_df_lig.R
Normal file
385
meta_data_analysis/combining_df_lig.R
Normal file
|
@ -0,0 +1,385 @@
|
|||
#=======================================================================
|
||||
# TASK: To combine mcsm and meta data with af and or
|
||||
# by filtering for distance to ligand (<10Ang).
|
||||
# This script doesn't output anything.
|
||||
# This script is sourced from other .R scripts for plotting ligand plots
|
||||
|
||||
# Input csv files:
|
||||
# 1) mcsm normalised and struct params
|
||||
# 2) gene associated meta_data_with_AFandOR
|
||||
#=======================================================================
|
||||
#%% specify curr dir
|
||||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/meta_data_analysis/')
|
||||
getwd()
|
||||
#=======================================================================
|
||||
#%% load packages
|
||||
#require(data.table)
|
||||
#require(arsenal)
|
||||
#require(compare)
|
||||
#library(tidyverse)
|
||||
|
||||
# header file
|
||||
header_dir = '~/git/LSHTM_analysis/'
|
||||
source(paste0(header_dir, '/', 'my_header.R'))
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
#=======================================================================
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = paste0(gene,'_p.')
|
||||
cat(gene_match)
|
||||
|
||||
#===========
|
||||
# data dir
|
||||
#===========
|
||||
datadir = '~/git/Data'
|
||||
|
||||
#===========
|
||||
# input
|
||||
#===========
|
||||
# infile1: mCSM data
|
||||
#indir = '~/git/Data/pyrazinamide/input/processed/'
|
||||
indir = paste0(datadir, '/', drug, '/', 'output') # revised {TODO: change in mcsm pipeline}
|
||||
#in_filename = 'mcsm_complex1_normalised.csv'
|
||||
in_filename = 'pnca_mcsm_struct_params.csv'
|
||||
infile = paste0(indir, '/', in_filename)
|
||||
cat(paste0('Reading infile1: mCSM output file', ' ', infile) )
|
||||
|
||||
# infile2: gene associated meta data combined with AF and OR
|
||||
#indir: same as above
|
||||
in_filename_comb = paste0(tolower(gene), '_meta_data_with_AFandOR.csv')
|
||||
infile_comb = paste0(indir, '/', in_filename_comb)
|
||||
cat(paste0('Reading infile2: gene associated combined metadata:', infile_comb))
|
||||
|
||||
#===========
|
||||
# output
|
||||
#===========
|
||||
# Uncomment if and when required to output
|
||||
outdir = paste0(datadir, '/', drug, '/', 'output') #same as indir
|
||||
cat('Output dir: ', outdir, '\n')
|
||||
#out_filename = paste0(tolower(gene), 'XXX')
|
||||
#outfile = paste0(outdir, '/', out_filename)
|
||||
#cat(paste0('Output file with full path:', outfile))
|
||||
|
||||
#%% end of variable assignment for input and output files
|
||||
#=======================================================================
|
||||
#%% Read input files
|
||||
|
||||
#####################################
|
||||
# input file 1: mcsm normalised data
|
||||
# output of step 4 mcsm_pipeline
|
||||
#####################################
|
||||
|
||||
cat('Reading mcsm_data:'
|
||||
, '\nindir: ', indir
|
||||
, '\ninfile_comb: ', in_filename)
|
||||
|
||||
mcsm_data = read.csv(infile
|
||||
# , row.names = 1
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat('Read mcsm_data file:'
|
||||
, '\nNo.of rows: ', nrow(mcsm_data)
|
||||
, '\nNo. of cols:', ncol(mcsm_data))
|
||||
|
||||
# clear variables
|
||||
rm(in_filename, infile)
|
||||
|
||||
str(mcsm_data)
|
||||
|
||||
table(mcsm_data$DUET_outcome); sum(table(mcsm_data$DUET_outcome) )
|
||||
|
||||
# spelling Correction 1: DUET
|
||||
mcsm_data$DUET_outcome[mcsm_data$DUET_outcome=='Stabilizing'] <- 'Stabilising'
|
||||
mcsm_data$DUET_outcome[mcsm_data$DUET_outcome=='Destabilizing'] <- 'Destabilising'
|
||||
|
||||
# checks: should be the same as above
|
||||
table(mcsm_data$DUET_outcome); sum(table(mcsm_data$DUET_outcome) )
|
||||
head(mcsm_data$DUET_outcome); tail(mcsm_data$DUET_outcome)
|
||||
|
||||
# spelling Correction 2: Ligand
|
||||
table(mcsm_data$Lig_outcome); sum(table(mcsm_data$Lig_outcome) )
|
||||
|
||||
mcsm_data$Lig_outcome[mcsm_data$Lig_outcome=='Stabilizing'] <- 'Stabilising'
|
||||
mcsm_data$Lig_outcome[mcsm_data$Lig_outcome=='Destabilizing'] <- 'Destabilising'
|
||||
|
||||
# checks: should be the same as above
|
||||
table(mcsm_data$Lig_outcome); sum(table(mcsm_data$Lig_outcome) )
|
||||
head(mcsm_data$Lig_outcome); tail(mcsm_data$Lig_outcome)
|
||||
|
||||
# muts with opposing effects on protomer and ligand stability
|
||||
# excluded from here as it is redundant.
|
||||
# check 'combining_two_df.R' to refer if required.
|
||||
#=======================================================================
|
||||
#%% !!!Filter data only for mcsm lig!!!
|
||||
|
||||
###########################
|
||||
# Filter/subset data
|
||||
# Lig plots < 10Ang
|
||||
# Filter the lig plots for Dis_to_lig < 10Ang
|
||||
###########################
|
||||
|
||||
# check range of distances
|
||||
max(mcsm_data$Dis_lig_Ang)
|
||||
min(mcsm_data$Dis_lig_Ang)
|
||||
|
||||
# count
|
||||
table(mcsm_data$Dis_lig_Ang<10)
|
||||
|
||||
# subset data to have only values less than 10 Ang
|
||||
mcsm_data2 = subset(mcsm_data, mcsm_data$Dis_lig_Ang < 10)
|
||||
|
||||
# sanity checks
|
||||
max(mcsm_data2$Dis_lig_Ang)
|
||||
min(mcsm_data2$Dis_lig_Ang)
|
||||
|
||||
# count no of unique positions
|
||||
length(unique(mcsm_data2$Position))
|
||||
|
||||
# count no of unique mutations
|
||||
length(unique(mcsm_data2$Mutationinformation))
|
||||
|
||||
# count Destabilisinga and stabilising
|
||||
table(mcsm_data2$Lig_outcome) #{RESULT: no of mutations within 10Ang}
|
||||
|
||||
#############################
|
||||
# Extra sanity check:
|
||||
# for mcsm_lig ONLY
|
||||
# Dis_lig_Ang should be <10
|
||||
#############################
|
||||
|
||||
if (max(mcsm_data2$Dis_lig_Ang) < 10){
|
||||
print ("Sanity check passed: lig data is <10Ang")
|
||||
}else{
|
||||
print ("Error: data should be filtered to be within 10Ang")
|
||||
}
|
||||
|
||||
#!!!!!!!!!!!!!!!!!!!!!
|
||||
# REASSIGNMENT: so as not to alter the script
|
||||
mcsm_data = mcsm_data2
|
||||
#!!!!!!!!!!!!!!!!!!!!!
|
||||
#=======================================================================
|
||||
|
||||
# clear variables
|
||||
rm(mcsm_data2)
|
||||
|
||||
# count na in each column
|
||||
na_count = sapply(mcsm_data, function(y) sum(length(which(is.na(y))))); na_count
|
||||
|
||||
# sort by Mutationinformation
|
||||
mcsm_data = mcsm_data[order(mcsm_data$Mutationinformation),]
|
||||
head(mcsm_data$Mutationinformation)
|
||||
|
||||
orig_col = ncol(mcsm_data)
|
||||
# get freq count of positions and add to the df
|
||||
setDT(mcsm_data)[, occurrence := .N, by = .(Position)]
|
||||
|
||||
cat('Added 1 col: position frequency to see which posn has how many muts'
|
||||
, '\nNo. of cols now', ncol(mcsm_data)
|
||||
, '\nNo. of cols before: ', orig_col)
|
||||
|
||||
pos_count_check = data.frame(mcsm_data$Position, mcsm_data$occurrence)
|
||||
|
||||
######################################
|
||||
# input file2 meta data with AFandOR
|
||||
######################################
|
||||
cat('Reading combined meta data and AFandOR file:'
|
||||
, '\nindir: ', indir
|
||||
, '\ninfile_comb: ', in_filename_comb)
|
||||
|
||||
meta_with_afor <- read.csv(infile_comb
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat('Read mcsm_data file:'
|
||||
, '\nNo.of rows: ', nrow(meta_with_afor)
|
||||
, '\nNo. of cols:', ncol(meta_with_afor))
|
||||
|
||||
# clear variables
|
||||
rm(in_filename_comb, infile_comb)
|
||||
|
||||
str(meta_with_afor)
|
||||
|
||||
# sort by Mutationinformation
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
meta_with_afor = meta_with_afor[order(meta_with_afor$Mutationinformation),]
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
#=======================================================================
|
||||
cat('Begin merging dfs with NAs',
|
||||
, '\n===============================================================')
|
||||
|
||||
###########################
|
||||
# merging two dfs: with NA
|
||||
###########################
|
||||
# link col name = 'Mutationinforamtion'
|
||||
cat('Merging dfs with NAs: big df (1-many relationship b/w id & mut)'
|
||||
,'\nlinking col: Mutationinforamtion'
|
||||
,'\nfilename: merged_df2')
|
||||
|
||||
head(mcsm_data$Mutationinformation)
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
|
||||
#########
|
||||
# a) merged_df2: meta data with mcsm
|
||||
#########
|
||||
merged_df2 = merge(x = meta_with_afor
|
||||
, y = mcsm_data
|
||||
, by = 'Mutationinformation'
|
||||
, all.y = T)
|
||||
|
||||
cat('Dim of merged_df2: '
|
||||
, '\nNo. of rows: ', nrow(merged_df2)
|
||||
, '\nNo. of cols: ', ncol(merged_df2))
|
||||
head(merged_df2$Position)
|
||||
|
||||
if(nrow(meta_with_afor) == nrow(merged_df2)){
|
||||
cat('nrow(merged_df2) = nrow (gene associated metadata)'
|
||||
,'\nExpected no. of rows: ',nrow(meta_with_afor)
|
||||
,'\nGot no. of rows: ', nrow(merged_df2))
|
||||
} else{
|
||||
cat('nrow(merged_df2)!= nrow(gene associated metadata)'
|
||||
, '\nExpected no. of rows after merge: ', nrow(meta_with_afor)
|
||||
, '\nGot no. of rows: ', nrow(merged_df2)
|
||||
, '\nFinding discrepancy')
|
||||
merged_muts_u = unique(merged_df2$Mutationinformation)
|
||||
meta_muts_u = unique(meta_with_afor$Mutationinformation)
|
||||
# find the index where it differs
|
||||
unique(meta_muts_u[! meta_muts_u %in% merged_muts_u])
|
||||
}
|
||||
|
||||
# sort by Position
|
||||
head(merged_df2$Position)
|
||||
merged_df2 = merged_df2[order(merged_df2$Position),]
|
||||
head(merged_df2$Position)
|
||||
|
||||
merged_df2v2 = merge(x = meta_with_afor
|
||||
, y = mcsm_data
|
||||
, by = 'Mutationinformation'
|
||||
, all.x = T)
|
||||
#!=!=!=!=!=!=!=!
|
||||
# COMMENT: used all.y since position 186 is not part of the struc,
|
||||
# hence doesn't have a mcsm value
|
||||
# but 186 is associated with mutation
|
||||
#!=!=!=!=!=!=!=!
|
||||
|
||||
# should be False
|
||||
identical(merged_df2, merged_df2v2)
|
||||
table(merged_df2$Position%in%merged_df2v2$Position)
|
||||
|
||||
rm(merged_df2v2)
|
||||
|
||||
#########
|
||||
# b) merged_df3: remove duplicate mutation information
|
||||
#########
|
||||
cat('Merging dfs with NAs: small df (removing duplicate muts)'
|
||||
,'\nCannot trust lineage info from this'
|
||||
,'\nlinking col: Mutationinforamtion'
|
||||
,'\nfilename: merged_df3')
|
||||
|
||||
#==#=#=#=#=#=#
|
||||
# Cannot trust lineage, country from this df as the same mutation
|
||||
# can have many different lineages
|
||||
# but this should be good for the numerical corr plots
|
||||
#=#=#=#=#=#=#=
|
||||
merged_df3 = merged_df2[!duplicated(merged_df2$Mutationinformation),]
|
||||
head(merged_df3$Position); tail(merged_df3$Position) # should be sorted
|
||||
|
||||
# sanity checks
|
||||
# nrows of merged_df3 should be the same as the nrows of mcsm_data
|
||||
if(nrow(mcsm_data) == nrow(merged_df3)){
|
||||
cat('PASS: No. of rows match with mcsm_data'
|
||||
,'\nExpected no. of rows: ', nrow(mcsm_data)
|
||||
,'\nGot no. of rows: ', nrow(merged_df3))
|
||||
} else {
|
||||
cat('FAIL: No. of rows mismatch'
|
||||
, '\nNo. of rows mcsm_data: ', nrow(mcsm_data)
|
||||
, '\nNo. of rows merged_df3: ', nrow(merged_df3))
|
||||
}
|
||||
|
||||
# counting NAs in AF, OR cols in merged_df3
|
||||
# this is becuase mcsm has no AF, OR cols,
|
||||
# so you cannot count NAs
|
||||
if (identical(sum(is.na(merged_df3$OR))
|
||||
, sum(is.na(merged_df3$pvalue))
|
||||
, sum(is.na(merged_df3$AF)))){
|
||||
cat('PASS: NA count match for OR, pvalue and AF\n')
|
||||
na_count_df3 = sum(is.na(merged_df3$AF))
|
||||
cat('No. of NAs: ', sum(is.na(merged_df3$OR)))
|
||||
} else{
|
||||
cat('FAIL: NA count mismatch'
|
||||
, '\nNA in OR: ', sum(is.na(merged_df3$OR))
|
||||
, '\nNA in pvalue: ', sum(is.na(merged_df3$pvalue))
|
||||
, '\nNA in AF:', sum(is.na(merged_df3$AF)))
|
||||
}
|
||||
#=======================================================================
|
||||
#%% merging without NAs
|
||||
|
||||
cat('Begin merging dfs without NAs',
|
||||
, '\n===============================================================')
|
||||
|
||||
cat('Merging dfs without any NAs: big df (1-many relationship b/w id & mut)'
|
||||
,'\nlinking col: Mutationinforamtion'
|
||||
,'\nfilename: merged_df2_comp')
|
||||
|
||||
#########
|
||||
# c) merged_df2_comp: merging two dfs without NA
|
||||
#########
|
||||
merged_df2_comp = merged_df2[!is.na(merged_df2$AF),]
|
||||
#merged_df2_comp = merged_df2[!duplicated(merged_df2$Mutationinformation),]
|
||||
|
||||
# sanity check
|
||||
cat('Checking nrows in merged_df2_comp')
|
||||
if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count + 1)){
|
||||
cat('PASS: No. of rows match'
|
||||
,'\nDim of merged_df2_comp: '
|
||||
,'\nExpected no. of rows: ', nrow(merged_df2) - na_count + 1
|
||||
, '\nNo. of rows: ', nrow(merged_df2_comp)
|
||||
, '\nNo. of cols: ', ncol(merged_df2_comp))
|
||||
}else{
|
||||
cat('FAIL: No. of rows mismatch'
|
||||
,'\nExpected no. of rows: ', nrow(merged_df2) - na_count + 1
|
||||
,'\nGot no. of rows: ', nrow(merged_df2_comp))
|
||||
}
|
||||
|
||||
#########
|
||||
# d) merged_df3_comp: remove duplicate mutation information
|
||||
#########
|
||||
merged_df3_comp = merged_df2_comp[!duplicated(merged_df2_comp$Mutationinformation),]
|
||||
|
||||
cat('Dim of merged_df3_comp: '
|
||||
, '\nNo. of rows: ', nrow(merged_df3_comp)
|
||||
, '\nNo. of cols: ', ncol(merged_df3_comp))
|
||||
|
||||
# alternate way of deriving merged_df3_comp
|
||||
foo = merged_df3[!is.na(merged_df3$AF),]
|
||||
# compare dfs: foo and merged_df3_com
|
||||
all.equal(foo, merged_df3)
|
||||
|
||||
summary(comparedf(foo, merged_df3))
|
||||
|
||||
# sanity check
|
||||
cat('Checking nrows in merged_df3_comp')
|
||||
if(nrow(merged_df3_comp) == nrow(merged_df3)){
|
||||
cat('NO NAs detected in merged_df3 in AF|OR cols'
|
||||
,'\nNo. of rows are identical: ', nrow(merged_df3))
|
||||
} else{
|
||||
if(nrow(merged_df3_comp) == nrow(merged_df3) - na_count_df3) {
|
||||
cat('PASS: NAs detected in merged_df3 in AF|OR cols'
|
||||
, '\nNo. of NAs: ', na_count_df3
|
||||
, '\nExpected no. of rows in merged_df3_comp: ', nrow(merged_df3) - na_count_df3
|
||||
, '\nGot no. of rows: ', nrow(merged_df3_comp))
|
||||
}
|
||||
}
|
||||
|
||||
#=======================================================================
|
||||
# write_output files
|
||||
# Not required as this is a subset of the combining_two_df.R
|
||||
#*************************
|
||||
# clear variables
|
||||
rm(mcsm_data, meta_with_afor, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, orig_col, outdir)
|
||||
rm(pos_count_check)
|
||||
#%% end of script
|
||||
#=======================================================================
|
||||
|
||||
|
423
meta_data_analysis/combining_df_ps.R
Normal file
423
meta_data_analysis/combining_df_ps.R
Normal file
|
@ -0,0 +1,423 @@
|
|||
#=======================================================================
|
||||
# TASK: To combine mcsm and meta data with af and or files
|
||||
# Input csv files:
|
||||
# 1) mcsm normalised and struct params
|
||||
# 2) gene associated meta_data_with_AFandOR
|
||||
|
||||
# Output:
|
||||
# 1) muts with opposite effects on stability
|
||||
# 2) large combined df including NAs for AF, OR,etc
|
||||
# Dim: same no. of rows as gene associated meta_data_with_AFandOR
|
||||
# 3) small combined df including NAs for AF, OR, etc.
|
||||
# Dim: same as mcsm data
|
||||
# 4) large combined df excluding NAs
|
||||
# Dim: dim(#1) - no. of NAs(AF|OR) + 1
|
||||
# 5) small combined df excluding NAs
|
||||
# Dim: dim(#2) - no. of unique NAs - 1
|
||||
# This script is sourced from other .R scripts for plotting
|
||||
#=======================================================================
|
||||
#%% specify curr dir
|
||||
getwd()
|
||||
setwd('~/git/LSHTM_analysis/meta_data_analysis/')
|
||||
getwd()
|
||||
#=======================================================================
|
||||
#%% load packages
|
||||
#require(data.table)
|
||||
#require(arsenal)
|
||||
#require(compare)
|
||||
#library(tidyverse)
|
||||
|
||||
# header file
|
||||
header_dir = '~/git/LSHTM_analysis/'
|
||||
source(paste0(header_dir, '/', 'my_header.R'))
|
||||
#=======================================================================
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = paste0(gene,'_p.')
|
||||
cat(gene_match)
|
||||
|
||||
#===========
|
||||
# data dir
|
||||
#===========
|
||||
datadir = '~/git/Data'
|
||||
|
||||
#===========
|
||||
# input
|
||||
#===========
|
||||
# infile1: mCSM data
|
||||
#indir = '~/git/Data/pyrazinamide/input/processed/'
|
||||
indir = paste0(datadir, '/', drug, '/', 'output') # revised {TODO: change in mcsm pipeline}
|
||||
#in_filename = 'mcsm_complex1_normalised.csv'
|
||||
in_filename = 'pnca_mcsm_struct_params.csv'
|
||||
infile = paste0(indir, '/', in_filename)
|
||||
cat(paste0('Reading infile1: mCSM output file', ' ', infile, '\n') )
|
||||
|
||||
# infile2: gene associated meta data combined with AF and OR
|
||||
#indir: same as above
|
||||
in_filename_comb = paste0(tolower(gene), '_meta_data_with_AFandOR.csv')
|
||||
infile_comb = paste0(indir, '/', in_filename_comb)
|
||||
cat(paste0('Reading infile2: gene associated combined metadata:', infile_comb, '\n'))
|
||||
|
||||
#===========
|
||||
# output
|
||||
#===========
|
||||
# Uncomment if and when required to output
|
||||
outdir = paste0(datadir, '/', drug, '/', 'output') #same as indir
|
||||
cat('Output dir: ', outdir, '\n')
|
||||
#out_filename = paste0(tolower(gene), 'XXX')
|
||||
#outfile = paste0(outdir, '/', out_filename)
|
||||
#cat(paste0('Output file with full path:', outfile))
|
||||
|
||||
#%% end of variable assignment for input and output files
|
||||
#=======================================================================
|
||||
#%% Read input files
|
||||
|
||||
#####################################
|
||||
# input file 1: mcsm normalised data
|
||||
# output of step 4 mcsm_pipeline
|
||||
#####################################
|
||||
cat('Reading mcsm_data:'
|
||||
, '\nindir: ', indir
|
||||
, '\ninfile_comb: ', in_filename)
|
||||
|
||||
mcsm_data = read.csv(infile
|
||||
# , row.names = 1
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat('Read mcsm_data file:'
|
||||
, '\nNo.of rows: ', nrow(mcsm_data)
|
||||
, '\nNo. of cols:', ncol(mcsm_data))
|
||||
|
||||
# clear variables
|
||||
rm(in_filename, infile)
|
||||
|
||||
str(mcsm_data)
|
||||
|
||||
table(mcsm_data$DUET_outcome); sum(table(mcsm_data$DUET_outcome) )
|
||||
|
||||
# spelling Correction 1: DUET
|
||||
mcsm_data$DUET_outcome[mcsm_data$DUET_outcome=='Stabilizing'] <- 'Stabilising'
|
||||
mcsm_data$DUET_outcome[mcsm_data$DUET_outcome=='Destabilizing'] <- 'Destabilising'
|
||||
|
||||
# checks: should be the same as above
|
||||
table(mcsm_data$DUET_outcome); sum(table(mcsm_data$DUET_outcome) )
|
||||
head(mcsm_data$DUET_outcome); tail(mcsm_data$DUET_outcome)
|
||||
|
||||
# spelling Correction 2: Ligand
|
||||
table(mcsm_data$Lig_outcome); sum(table(mcsm_data$Lig_outcome) )
|
||||
|
||||
mcsm_data$Lig_outcome[mcsm_data$Lig_outcome=='Stabilizing'] <- 'Stabilising'
|
||||
mcsm_data$Lig_outcome[mcsm_data$Lig_outcome=='Destabilizing'] <- 'Destabilising'
|
||||
|
||||
# checks: should be the same as above
|
||||
table(mcsm_data$Lig_outcome); sum(table(mcsm_data$Lig_outcome) )
|
||||
head(mcsm_data$Lig_outcome); tail(mcsm_data$Lig_outcome)
|
||||
|
||||
# muts with opposing effects on protomer and ligand stability
|
||||
table(mcsm_data$DUET_outcome != mcsm_data$Lig_outcome)
|
||||
changes = mcsm_data[which(mcsm_data$DUET_outcome != mcsm_data$Lig_outcome),]
|
||||
|
||||
# sanity check: redundant, but uber cautious!
|
||||
dl_i = which(mcsm_data$DUET_outcome != mcsm_data$Lig_outcome)
|
||||
ld_i = which(mcsm_data$Lig_outcome != mcsm_data$DUET_outcome)
|
||||
|
||||
cat('Identifying muts with opposite stability effects')
|
||||
if(nrow(changes) == (table(mcsm_data$DUET_outcome != mcsm_data$Lig_outcome)[[2]]) & identical(dl_i,ld_i)) {
|
||||
cat('PASS: muts with opposite effects on stability and affinity correctly identified'
|
||||
, '\nNo. of such muts: ', nrow(changes))
|
||||
}else {
|
||||
cat('FAIL: unsuccessful in extracting muts with changed stability effects')
|
||||
}
|
||||
|
||||
#***************************
|
||||
# write file: changed muts
|
||||
out_filename = 'muts_opp_effects.csv'
|
||||
outfile = paste0(outdir, '/', out_filename)
|
||||
cat('Writing file for muts with opp effects:'
|
||||
, '\nFilename: ', outfile
|
||||
, '\nPath: ', outdir)
|
||||
|
||||
write.csv(changes, outfile)
|
||||
#****************************
|
||||
# clear variables
|
||||
rm(out_filename, outfile)
|
||||
rm(changes, dl_i, ld_i)
|
||||
|
||||
# count na in each column
|
||||
na_count = sapply(mcsm_data, function(y) sum(length(which(is.na(y))))); na_count
|
||||
|
||||
# sort by Mutationinformation
|
||||
mcsm_data = mcsm_data[order(mcsm_data$Mutationinformation),]
|
||||
head(mcsm_data$Mutationinformation)
|
||||
|
||||
orig_col = ncol(mcsm_data)
|
||||
|
||||
# get freq count of positions and add to the df
|
||||
setDT(mcsm_data)[, occurrence := .N, by = .(Position)]
|
||||
|
||||
cat('Added 1 col: position frequency to see which posn has how many muts'
|
||||
, '\nNo. of cols now', ncol(mcsm_data)
|
||||
, '\nNo. of cols before: ', orig_col)
|
||||
|
||||
pos_count_check = data.frame(mcsm_data$Position, mcsm_data$occurrence)
|
||||
|
||||
#######################################
|
||||
# input file 2: meta data with AFandOR
|
||||
#######################################
|
||||
cat('Reading combined meta data and AFandOR file:'
|
||||
, '\nindir: ', indir
|
||||
, '\ninfile_comb: ', in_filename_comb)
|
||||
|
||||
meta_with_afor <- read.csv(infile_comb
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat('Read mcsm_data file:'
|
||||
, '\nNo.of rows: ', nrow(meta_with_afor)
|
||||
, '\nNo. of cols:', ncol(meta_with_afor))
|
||||
|
||||
# counting NAs in AF, OR cols
|
||||
if (identical(sum(is.na(meta_with_afor$OR))
|
||||
, sum(is.na(meta_with_afor$pvalue))
|
||||
, sum(is.na(meta_with_afor$AF)))){
|
||||
cat('PASS: NA count match for OR, pvalue and AF\n')
|
||||
na_count = sum(is.na(meta_with_afor$AF))
|
||||
cat('No. of NAs: ', sum(is.na(meta_with_afor$OR)))
|
||||
} else{
|
||||
cat('FAIL: NA count mismatch'
|
||||
, '\nNA in OR: ', sum(is.na(meta_with_afor$OR))
|
||||
, '\nNA in pvalue: ', sum(is.na(meta_with_afor$pvalue))
|
||||
, '\nNA in AF:', sum(is.na(meta_with_afor$AF)))
|
||||
}
|
||||
|
||||
# clear variables
|
||||
rm(in_filename_comb, infile_comb)
|
||||
|
||||
str(meta_with_afor)
|
||||
|
||||
# sort by Mutationinformation
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
meta_with_afor = meta_with_afor[order(meta_with_afor$Mutationinformation),]
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
#=======================================================================
|
||||
cat('Begin merging dfs with NAs',
|
||||
, '\n===============================================================')
|
||||
|
||||
###########################
|
||||
# merging two dfs: with NA
|
||||
###########################
|
||||
# link col name = 'Mutationinforamtion'
|
||||
head(mcsm_data$Mutationinformation)
|
||||
head(meta_with_afor$Mutationinformation)
|
||||
|
||||
cat('Merging dfs with NAs: big df (1-many relationship b/w id & mut)'
|
||||
,'\nlinking col: Mutationinforamtion'
|
||||
,'\nfilename: merged_df2')
|
||||
|
||||
#########
|
||||
# a) merged_df2: meta data with mcsm
|
||||
#########
|
||||
merged_df2 = merge(x = meta_with_afor
|
||||
,y = mcsm_data
|
||||
, by = 'Mutationinformation'
|
||||
, all.y = T)
|
||||
|
||||
cat('Dim of merged_df2: '
|
||||
, '\nNo. of rows: ', nrow(merged_df2)
|
||||
, '\nNo. of cols: ', ncol(merged_df2))
|
||||
head(merged_df2$Position)
|
||||
|
||||
# sanity check
|
||||
cat('Checking nrows in merged_df2')
|
||||
if(nrow(meta_with_afor) == nrow(merged_df2)){
|
||||
cat('nrow(merged_df2) = nrow (gene associated metadata)'
|
||||
,'\nExpected no. of rows: ',nrow(meta_with_afor)
|
||||
,'\nGot no. of rows: ', nrow(merged_df2))
|
||||
} else{
|
||||
cat('nrow(merged_df2)!= nrow(gene associated metadata)'
|
||||
, '\nExpected no. of rows after merge: ', nrow(meta_with_afor)
|
||||
, '\nGot no. of rows: ', nrow(merged_df2)
|
||||
, '\nFinding discrepancy')
|
||||
merged_muts_u = unique(merged_df2$Mutationinformation)
|
||||
meta_muts_u = unique(meta_with_afor$Mutationinformation)
|
||||
# find the index where it differs
|
||||
unique(meta_muts_u[! meta_muts_u %in% merged_muts_u])
|
||||
}
|
||||
|
||||
# sort by Position
|
||||
head(merged_df2$Position)
|
||||
merged_df2 = merged_df2[order(merged_df2$Position),]
|
||||
head(merged_df2$Position)
|
||||
|
||||
merged_df2v2 = merge(x = meta_with_afor
|
||||
,y = mcsm_data
|
||||
, by = 'Mutationinformation'
|
||||
, all.x = T)
|
||||
#!=!=!=!=!=!=!=!
|
||||
# COMMENT: used all.y since position 186 is not part of the struc,
|
||||
# hence doesn't have a mcsm value
|
||||
# but 186 is associated with mutation
|
||||
#!=!=!=!=!=!=!=!
|
||||
|
||||
# should be False
|
||||
identical(merged_df2, merged_df2v2)
|
||||
table(merged_df2$Position%in%merged_df2v2$Position)
|
||||
|
||||
rm(merged_df2v2)
|
||||
|
||||
#########
|
||||
# b) merged_df3:remove duplicate mutation information
|
||||
#########
|
||||
cat('Merging dfs without NAs: small df (removing muts with no AF|OR associated)'
|
||||
,'\nCannot trust lineage info from this'
|
||||
,'\nlinking col: Mutationinforamtion'
|
||||
,'\nfilename: merged_df3')
|
||||
|
||||
#==#=#=#=#=#=#
|
||||
# Cannot trust lineage, country from this df as the same mutation
|
||||
# can have many different lineages
|
||||
# but this should be good for the numerical corr plots
|
||||
#=#=#=#=#=#=#=
|
||||
merged_df3 = merged_df2[!duplicated(merged_df2$Mutationinformation),]
|
||||
head(merged_df3$Position); tail(merged_df3$Position) # should be sorted
|
||||
|
||||
# sanity check
|
||||
cat('Checking nrows in merged_df3')
|
||||
if(nrow(mcsm_data) == nrow(merged_df3)){
|
||||
cat('PASS: No. of rows match with mcsm_data'
|
||||
,'\nExpected no. of rows: ', nrow(mcsm_data)
|
||||
,'\nGot no. of rows: ', nrow(merged_df3))
|
||||
} else {
|
||||
cat('FAIL: No. of rows mismatch'
|
||||
, '\nNo. of rows mcsm_data: ', nrow(mcsm_data)
|
||||
, '\nNo. of rows merged_df3: ', nrow(merged_df3))
|
||||
}
|
||||
|
||||
# counting NAs in AF, OR cols in merged_df3
|
||||
# this is becuase mcsm has no AF, OR cols,
|
||||
# so you cannot count NAs
|
||||
if (identical(sum(is.na(merged_df3$OR))
|
||||
, sum(is.na(merged_df3$pvalue))
|
||||
, sum(is.na(merged_df3$AF)))){
|
||||
cat('PASS: NA count match for OR, pvalue and AF\n')
|
||||
na_count_df3 = sum(is.na(merged_df3$AF))
|
||||
cat('No. of NAs: ', sum(is.na(merged_df3$OR)))
|
||||
} else{
|
||||
cat('FAIL: NA count mismatch'
|
||||
, '\nNA in OR: ', sum(is.na(merged_df3$OR))
|
||||
, '\nNA in pvalue: ', sum(is.na(merged_df3$pvalue))
|
||||
, '\nNA in AF:', sum(is.na(merged_df3$AF)))
|
||||
}
|
||||
#=======================================================================
|
||||
#%% merging without NAs
|
||||
|
||||
cat('Begin merging dfs without NAs',
|
||||
, '\n===============================================================')
|
||||
|
||||
cat('Merging dfs without any NAs: big df (1-many relationship b/w id & mut)'
|
||||
,'\nlinking col: Mutationinforamtion'
|
||||
,'\nfilename: merged_df2_comp')
|
||||
|
||||
#########
|
||||
# c) merged_df2_comp: same as merge 1 but excluding NA
|
||||
#########
|
||||
merged_df2_comp = merged_df2[!is.na(merged_df2$AF),]
|
||||
#merged_df2_comp = merged_df2[!duplicated(merged_df2$Mutationinformation),]
|
||||
|
||||
# sanity check
|
||||
cat('Checking nrows in merged_df2_comp')
|
||||
if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count + 1)){
|
||||
cat('PASS: No. of rows match'
|
||||
,'\nDim of merged_df2_comp: '
|
||||
,'\nExpected no. of rows: ', nrow(merged_df2) - na_count + 1
|
||||
, '\nNo. of rows: ', nrow(merged_df2_comp)
|
||||
, '\nNo. of cols: ', ncol(merged_df2_comp))
|
||||
}else{
|
||||
cat('FAIL: No. of rows mismatch'
|
||||
,'\nExpected no. of rows: ', nrow(merged_df2) - na_count + 1
|
||||
,'\nGot no. of rows: ', nrow(merged_df2_comp))
|
||||
}
|
||||
|
||||
#########
|
||||
# d) merged_df3_comp: remove duplicate mutation information
|
||||
#########
|
||||
merged_df3_comp = merged_df2_comp[!duplicated(merged_df2_comp$Mutationinformation),]
|
||||
|
||||
cat('Dim of merged_df3_comp: '
|
||||
, '\nNo. of rows: ', nrow(merged_df3_comp)
|
||||
, '\nNo. of cols: ', ncol(merged_df3_comp))
|
||||
|
||||
# alternate way of deriving merged_df3_comp
|
||||
foo = merged_df3[!is.na(merged_df3$AF),]
|
||||
# compare dfs: foo and merged_df3_com
|
||||
all.equal(foo, merged_df3)
|
||||
|
||||
summary(comparedf(foo, merged_df3))
|
||||
|
||||
# sanity check
|
||||
cat('Checking nrows in merged_df3_comp')
|
||||
if(nrow(merged_df3_comp) == nrow(merged_df3)){
|
||||
cat('NO NAs detected in merged_df3 in AF|OR cols'
|
||||
,'\nNo. of rows are identical: ', nrow(merged_df3))
|
||||
} else{
|
||||
if(nrow(merged_df3_comp) == nrow(merged_df3) - na_count_df3) {
|
||||
cat('PASS: NAs detected in merged_df3 in AF|OR cols'
|
||||
, '\nNo. of NAs: ', na_count_df3
|
||||
, '\nExpected no. of rows in merged_df3_comp: ', nrow(merged_df3) - na_count_df3
|
||||
, '\nGot no. of rows: ', nrow(merged_df3_comp))
|
||||
}
|
||||
}
|
||||
#=======================================================================
|
||||
#*********************
|
||||
# writing 1 file in the style of a loop: merged_df3
|
||||
# print(output dir)
|
||||
#i = 'merged_df3'
|
||||
#out_filename = paste0(i, '.csv')
|
||||
#outfile = paste0(outdir, '/', out_filename)
|
||||
|
||||
#cat('Writing output file: '
|
||||
# ,'\nFilename: ', out_filename
|
||||
# ,'\nPath: ', outdir)
|
||||
|
||||
#template: write.csv(merged_df3, 'merged_df3.csv')
|
||||
#write.csv(get(i), outfile, row.names = FALSE)
|
||||
#cat('Finished writing: ', outfile
|
||||
# , '\nNo. of rows: ', nrow(get(i))
|
||||
# , '\nNo. of cols: ', ncol(get(i)))
|
||||
|
||||
#%% write_output files; all 4 files:
|
||||
outvars = c('merged_df2'
|
||||
, 'merged_df3'
|
||||
, 'merged_df2_comp'
|
||||
, 'merged_df3_comp')
|
||||
|
||||
cat('Writing output files: '
|
||||
, '\nPath:', outdir)
|
||||
|
||||
for (i in outvars){
|
||||
# cat(i, '\n')
|
||||
out_filename = paste0(i, '.csv')
|
||||
# cat(out_filename, '\n')
|
||||
# cat('getting value of variable: ', get(i))
|
||||
outfile = paste0(outdir, '/', out_filename)
|
||||
# cat('Full output path: ', outfile, '\n')
|
||||
cat('Writing output file:'
|
||||
,'\nFilename: ', out_filename,'\n')
|
||||
write.csv(get(i), outfile, row.names = FALSE)
|
||||
cat('Finished writing: ', outfile
|
||||
, '\nNo. of rows: ', nrow(get(i))
|
||||
, '\nNo. of cols: ', ncol(get(i)), '\n')
|
||||
}
|
||||
|
||||
# alternate way to replace with implicit loop
|
||||
# FIXME
|
||||
#sapply(outvars, function(x, y) write.csv(get(outvars), paste0(outdir, '/', outvars, '.csv')))
|
||||
#*************************
|
||||
# clear variables
|
||||
rm(mcsm_data, meta_with_afor, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, orig_col, outdir)
|
||||
rm(pos_count_check)
|
||||
#%% end of script
|
||||
#=======================================================================
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue