renamed file to denote corr adjusted and plain
This commit is contained in:
parent
c09330130e
commit
afe650fd7f
2 changed files with 95 additions and 95 deletions
|
@ -14,6 +14,7 @@ getwd()
|
|||
source("Header_TT.R")
|
||||
require(cowplot)
|
||||
source("combining_dfs_plotting.R")
|
||||
source("my_pairs_panel.R") # with lower panel turned off
|
||||
# should return the following dfs, directories and variables
|
||||
|
||||
# PS combined:
|
||||
|
@ -77,33 +78,76 @@ rm( merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig, my_df_u, m
|
|||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#===========================
|
||||
# Data for Correlation plots:PS
|
||||
#===========================
|
||||
table(df_ps$duet_outcome)
|
||||
#============================
|
||||
# adding foldx scaled values
|
||||
# scale data b/w -1 and 1
|
||||
#============================
|
||||
n = which(colnames(df_ps) == "ddg"); n
|
||||
|
||||
my_min = min(df_ps[,n]); my_min
|
||||
my_max = max(df_ps[,n]); my_max
|
||||
|
||||
df_ps$foldx_scaled = ifelse(df_ps[,n] < 0
|
||||
, df_ps[,n]/abs(my_min)
|
||||
, df_ps[,n]/my_max)
|
||||
# sanity check
|
||||
my_min = min(df_ps$foldx_scaled); my_min
|
||||
my_max = max(df_ps$foldx_scaled); my_max
|
||||
|
||||
if (my_min == -1 && my_max == 1){
|
||||
cat("PASS: foldx ddg successfully scaled b/w -1 and 1"
|
||||
, "\nProceeding with assigning foldx outcome category")
|
||||
}else{
|
||||
cat("FAIL: could not scale foldx ddg values"
|
||||
, "Aborting!")
|
||||
}
|
||||
|
||||
|
||||
#================================
|
||||
# adding foldx outcome category
|
||||
# ddg<0 = "Stabilising" (-ve)
|
||||
#=================================
|
||||
|
||||
c1 = table(df_ps$ddg < 0)
|
||||
df_ps$foldx_outcome = ifelse(df_ps$ddg < 0, "Stabilising", "Destabilising")
|
||||
c2 = table(df_ps$ddg < 0)
|
||||
|
||||
if ( all(c1 == c2) ){
|
||||
cat("PASS: foldx outcome successfully created")
|
||||
}else{
|
||||
cat("FAIL: foldx outcome could not be created. Aborting!")
|
||||
exit()
|
||||
}
|
||||
|
||||
table(df_ps$foldx_outcome)
|
||||
|
||||
#======================
|
||||
# adding log cols
|
||||
#======================
|
||||
|
||||
df_ps$log10_or_mychisq = log10(df_ps$or_mychisq)
|
||||
df_ps$neglog_pval_fisher = -log10(df_ps$pval_fisher)
|
||||
|
||||
df_ps$log10_or_kin = log10(df_ps$or_kin)
|
||||
df_ps$neglog_pwald_kin = -log10(df_ps$pwald_kin)
|
||||
|
||||
#===========================
|
||||
# Data for Correlation plots:PS
|
||||
#===========================
|
||||
# subset data to generate pairwise correlations
|
||||
cols_to_select = c("duet_scaled"
|
||||
|
||||
, "foldx_scaled"
|
||||
|
||||
, "log10_or_mychisq"
|
||||
, "neglog_pval_fisher"
|
||||
|
||||
, "log10_or_kin"
|
||||
, "neglog_pwald_kin"
|
||||
|
||||
, "af"
|
||||
|
||||
, "duet_outcome"
|
||||
, drug)
|
||||
|
||||
corr_data_ps = df_ps[, cols_to_select]
|
||||
corr_data_ps = df_ps[cols_to_select]
|
||||
|
||||
dim(corr_data_ps)
|
||||
|
||||
|
@ -113,12 +157,11 @@ dim(corr_data_ps)
|
|||
# assign nice colnames (for display)
|
||||
my_corr_colnames = c("DUET"
|
||||
|
||||
, "Foldx"
|
||||
|
||||
, "Log(OR)"
|
||||
, "-Log(P)"
|
||||
|
||||
, "Log(OR adjusted)"
|
||||
, "-Log(P wald)"
|
||||
|
||||
|
||||
, "AF"
|
||||
|
||||
, "duet_outcome"
|
||||
|
@ -147,7 +190,8 @@ head(my_corr_ps)
|
|||
cat("Corr plot PS:", plot_corr_ps)
|
||||
svg(plot_corr_ps, width = 15, height = 15)
|
||||
|
||||
OutPlot1 = pairs.panels(my_corr_ps[1:(length(my_corr_ps)-1)]
|
||||
#OutPlot1 = pairs.panels([1:(length(my_corr_ps)-1)]
|
||||
OutPlot1 = my_pp(my_corr_ps[1:(length(my_corr_ps)-1)]
|
||||
, method = "spearman" # correlation method
|
||||
, hist.col = "grey" ##00AFBB
|
||||
, density = TRUE # show density plots
|
||||
|
@ -162,10 +206,11 @@ OutPlot1 = pairs.panels(my_corr_ps[1:(length(my_corr_ps)-1)]
|
|||
#, alpha = .05
|
||||
#, points(pch = 19, col = c("#f8766d", "#00bfc4"))
|
||||
, cex = 3
|
||||
, cex.axis = 2.5
|
||||
, cex.axis = 1.5
|
||||
, cex.labels = 2.1
|
||||
, cex.cor = 1
|
||||
, smooth = F
|
||||
|
||||
)
|
||||
|
||||
print(OutPlot1)
|
||||
|
@ -190,9 +235,6 @@ cols_to_select = c("affinity_scaled"
|
|||
, "log10_or_mychisq"
|
||||
, "neglog_pval_fisher"
|
||||
|
||||
, "log10_or_kin"
|
||||
, "neglog_pwald_kin"
|
||||
|
||||
, "af"
|
||||
|
||||
, "ligand_outcome"
|
||||
|
@ -209,9 +251,6 @@ my_corr_colnames = c("Ligand Affinity"
|
|||
, "Log(OR)"
|
||||
, "-Log(P)"
|
||||
|
||||
, "Log(OR adjusted)"
|
||||
, "-Log(P wald)"
|
||||
|
||||
, "AF"
|
||||
|
||||
, "ligand_outcome"
|
||||
|
@ -237,7 +276,8 @@ head(my_corr_lig)
|
|||
cat("Corr LIG plot:", plot_corr_lig)
|
||||
svg(plot_corr_lig, width = 15, height = 15)
|
||||
|
||||
OutPlot2 = pairs.panels(my_corr_lig[1:(length(my_corr_lig)-1)]
|
||||
#OutPlot2 = pairs.panels(my_corr_lig[1:(length(my_corr_lig)-1)]
|
||||
OutPlot2 = my_pp(my_corr_lig[1:(length(my_corr_lig)-1)]
|
||||
, method = "spearman" # correlation method
|
||||
, hist.col = "grey" ##00AFBB
|
||||
, density = TRUE # show density plots
|
||||
|
@ -252,7 +292,7 @@ OutPlot2 = pairs.panels(my_corr_lig[1:(length(my_corr_lig)-1)]
|
|||
#, alpha = .05
|
||||
#, points(pch = 19, col = c("#f8766d", "#00bfc4"))
|
||||
, cex = 3
|
||||
, cex.axis = 2.5
|
||||
, cex.axis = 1.5
|
||||
, cex.labels = 2.1
|
||||
, cex.cor = 1
|
||||
, smooth = F
|
||||
|
@ -261,5 +301,4 @@ OutPlot2 = pairs.panels(my_corr_lig[1:(length(my_corr_lig)-1)]
|
|||
print(OutPlot2)
|
||||
dev.off()
|
||||
#######################################################
|
||||
|
||||
|
||||
library(lattice)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue