adapted kd calc script with command line args and made it into a function
This commit is contained in:
parent
ded7307c22
commit
ae541ca16a
1 changed files with 222 additions and 0 deletions
222
scripts/kd_df.py
Executable file
222
scripts/kd_df.py
Executable file
|
@ -0,0 +1,222 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
'''
|
||||||
|
Created on Tue Aug 6 12:56:03 2019
|
||||||
|
|
||||||
|
@author: tanu
|
||||||
|
'''
|
||||||
|
#=======================================================================
|
||||||
|
# Task: Hydrophobicity (Kd) values for amino acid sequence using the
|
||||||
|
# Kyt&-Doolittle.
|
||||||
|
# Same output as using the expasy server (link below)
|
||||||
|
# Input: fasta file
|
||||||
|
|
||||||
|
# Output: csv file with
|
||||||
|
|
||||||
|
# useful links
|
||||||
|
# https://biopython.org/DIST/docs/api/Bio.SeqUtils.ProtParamData-pysrc.html
|
||||||
|
# https://web.expasy.org/protscale/pscale/protscale_help.html
|
||||||
|
#=======================================================================
|
||||||
|
#%% load packages
|
||||||
|
import sys, os
|
||||||
|
import argparse
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
from pylab import *
|
||||||
|
from Bio.SeqUtils import ProtParamData
|
||||||
|
from Bio.SeqUtils.ProtParam import ProteinAnalysis
|
||||||
|
from Bio import SeqIO
|
||||||
|
#from Bio.Alphabet.IUPAC import IUPACProtein
|
||||||
|
import pprint as pp
|
||||||
|
#=======================================================================
|
||||||
|
#%% specify homedir and curr dir
|
||||||
|
homedir = os.path.expanduser('~')
|
||||||
|
|
||||||
|
# set working dir
|
||||||
|
os.getcwd()
|
||||||
|
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
|
||||||
|
os.getcwd()
|
||||||
|
#=======================================================================
|
||||||
|
#%% command line args
|
||||||
|
arg_parser = argparse.ArgumentParser()
|
||||||
|
#arg_parser.add_argument('-d', '--drug', help='drug name', default = 'pyrazinamide')
|
||||||
|
#arg_parser.add_argument('-g', '--gene', help='gene name', default = 'pncA') # case sensitive
|
||||||
|
arg_parser.add_argument('-d', '--drug', help='drug name', default = 'DRUGNAME')
|
||||||
|
arg_parser.add_argument('-g', '--gene', help='gene name', default = 'geneName')
|
||||||
|
args = arg_parser.parse_args()
|
||||||
|
#=======================================================================
|
||||||
|
#%% variable assignment: input and output
|
||||||
|
#drug = 'pyrazinamide'
|
||||||
|
#gene = 'pncA'
|
||||||
|
drug = args.drug
|
||||||
|
gene = args.gene
|
||||||
|
gene_match = gene + '_p.'
|
||||||
|
|
||||||
|
#==========
|
||||||
|
# data dir
|
||||||
|
#==========
|
||||||
|
datadir = homedir + '/' + 'git/Data'
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# input
|
||||||
|
#=======
|
||||||
|
indir = datadir + '/' + drug + '/' + 'input'
|
||||||
|
in_filename = '3pl1.fasta.txt'
|
||||||
|
infile = indir + '/' + in_filename
|
||||||
|
print('Input filename:', in_filename
|
||||||
|
, '\nInput path:', indir
|
||||||
|
, '\n============================================================')
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# output
|
||||||
|
#=======
|
||||||
|
outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
|
out_filename = gene.lower() + '_kd.csv'
|
||||||
|
outfile = outdir + '/' + out_filename
|
||||||
|
print('Output filename:', out_filename
|
||||||
|
, '\nOutput path:', outdir
|
||||||
|
, '\n=============================================================')
|
||||||
|
#%% end of variable assignment for input and output files
|
||||||
|
#=======================================================================
|
||||||
|
def kd_to_csv(inputfasta, outputkdcsv, windowsize):
|
||||||
|
"""
|
||||||
|
Calculate kd (hydropathy values) from input fasta file
|
||||||
|
|
||||||
|
@param inputfasta: fasta file
|
||||||
|
@type inputfasta: string
|
||||||
|
|
||||||
|
@param outputkdcsv: csv file with kd values
|
||||||
|
@type outfile: string
|
||||||
|
|
||||||
|
@param windowsize: windowsize to perform KD calcs on (Kyte&-Doolittle)
|
||||||
|
@type DSSP: numeric
|
||||||
|
|
||||||
|
@return: writes df of kd values as csv
|
||||||
|
@type: .csv
|
||||||
|
"""
|
||||||
|
#===================
|
||||||
|
#calculate KD values: same as the expasy server
|
||||||
|
#===================
|
||||||
|
my_window = windowsize
|
||||||
|
offset = round((my_window/2)-0.5)
|
||||||
|
|
||||||
|
fh = open(inputfasta)
|
||||||
|
|
||||||
|
for record in SeqIO.parse(fh, 'fasta'):
|
||||||
|
id = record.id
|
||||||
|
seq = record.seq
|
||||||
|
num_residues = len(seq)
|
||||||
|
fh.close()
|
||||||
|
|
||||||
|
sequence = str(seq)
|
||||||
|
X = ProteinAnalysis(sequence)
|
||||||
|
|
||||||
|
# edge weight is set to default (100%)
|
||||||
|
kd_values = (X.protein_scale(ProtParamData.kd , window = my_window))
|
||||||
|
# sanity checks
|
||||||
|
print('Sequence Length:', num_residues)
|
||||||
|
print('kd_values Length:',len(kd_values))
|
||||||
|
print('Window Length:', my_window)
|
||||||
|
print('Window Offset:', offset)
|
||||||
|
print('=================================================================')
|
||||||
|
print('Checking:len(kd values) is as expected for the given window size & offset...')
|
||||||
|
expected_length = num_residues - (my_window - offset)
|
||||||
|
if len(kd_values) == expected_length:
|
||||||
|
print('PASS: expected and actual length of kd values match')
|
||||||
|
else:
|
||||||
|
print('FAIL: length mismatch'
|
||||||
|
,'\nExpected length:', expected_length
|
||||||
|
,'\nActual length:', len(kd_values)
|
||||||
|
, '\n=========================================================')
|
||||||
|
|
||||||
|
#===================
|
||||||
|
# creating two dfs
|
||||||
|
#===================
|
||||||
|
# 1) aa sequence and 2) kd_values. Then reset index for each df
|
||||||
|
# which will allow easy merging of the two dfs.
|
||||||
|
|
||||||
|
# df1: df of aa seq with index reset to start from 1
|
||||||
|
# (reflective of the actual aa position in a sequence)
|
||||||
|
# Name column of wt as 'wild_type' to be the same name used
|
||||||
|
# in the file required for merging later.
|
||||||
|
dfSeq = pd.DataFrame({'wild_type_kd':list(sequence)})
|
||||||
|
dfSeq.index = np.arange(1, len(dfSeq) + 1) # python is not inclusive
|
||||||
|
|
||||||
|
# df2: df of kd_values with index reset to start from offset + 1 and
|
||||||
|
# subsequent matched length of the kd_values
|
||||||
|
dfVals = pd.DataFrame({'kd_values':kd_values})
|
||||||
|
dfVals.index = np.arange(offset + 1, len(dfVals) + 1 + offset)
|
||||||
|
|
||||||
|
# sanity checks
|
||||||
|
max(dfVals['kd_values'])
|
||||||
|
min(dfVals['kd_values'])
|
||||||
|
|
||||||
|
#===================
|
||||||
|
# concatenating dfs
|
||||||
|
#===================
|
||||||
|
# Merge the two on index
|
||||||
|
# (as these are now reflective of the aa position numbers): df1 and df2
|
||||||
|
# This will introduce NaN where there is missing values. In our case this
|
||||||
|
# will be 2 (first and last ones based on window size and offset)
|
||||||
|
|
||||||
|
kd_df = pd.concat([dfSeq, dfVals], axis = 1)
|
||||||
|
|
||||||
|
#============================
|
||||||
|
# renaming index to position
|
||||||
|
#============================
|
||||||
|
kd_df = kd_df.rename_axis('position')
|
||||||
|
kd_df.head
|
||||||
|
|
||||||
|
print('Checking: position col i.e. index should be numeric')
|
||||||
|
if kd_df.index.dtype == 'int64':
|
||||||
|
print('PASS: position col is numeric'
|
||||||
|
, '\ndtype is:', kd_df.index.dtype)
|
||||||
|
else:
|
||||||
|
print('FAIL: position col is not numeric'
|
||||||
|
, '\nConverting to numeric')
|
||||||
|
kd_df.index.astype('int64')
|
||||||
|
print('Checking dtype for after conversion:\n'
|
||||||
|
, '\ndtype is:', kd_df.index.dtype
|
||||||
|
, '\n=========================================================')
|
||||||
|
#===============
|
||||||
|
# writing file
|
||||||
|
#===============
|
||||||
|
print('Writing file:', out_filename
|
||||||
|
, '\nFilename:', out_filename
|
||||||
|
, '\nPath:', outdir
|
||||||
|
, '\n=============================================================')
|
||||||
|
|
||||||
|
kd_df.to_csv(outfile, header = True, index = True)
|
||||||
|
|
||||||
|
print('Finished writing:', out_filename
|
||||||
|
, '\nNo. of rows:', len(kd_df)
|
||||||
|
, '\nNo. of cols:', len(kd_df.columns)
|
||||||
|
, '\n=============================================================')
|
||||||
|
|
||||||
|
#===============
|
||||||
|
# plot: optional!
|
||||||
|
#===============
|
||||||
|
# http://www.dalkescientific.com/writings/NBN/plotting.html
|
||||||
|
|
||||||
|
# FIXME: save fig
|
||||||
|
# extract just pdb if from 'id' to pass to title of plot
|
||||||
|
# foo = re.match(r'(^[0-9]{1}\w{3})', id).groups(1)
|
||||||
|
plot(kd_values, linewidth = 1.0)
|
||||||
|
#axis(xmin = 1, xmax = num_residues)
|
||||||
|
xlabel('Residue Number')
|
||||||
|
ylabel('Hydrophobicity')
|
||||||
|
title('K&D Hydrophobicity for ' + id)
|
||||||
|
show()
|
||||||
|
#%% end of function
|
||||||
|
#=======================================================================
|
||||||
|
#%% call function
|
||||||
|
#kd_to_csv(infile, outfile, windowsize = 3)
|
||||||
|
#=======================================================================
|
||||||
|
def main():
|
||||||
|
print('Running hydropathy calcs', in_filename, 'output csv:', out_filename)
|
||||||
|
kd_to_csv(infile, outfile, windowsize = 3)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
|
#%% end of script
|
||||||
|
#=======================================================================
|
Loading…
Add table
Add a link
Reference in a new issue