saving work
This commit is contained in:
parent
3514e1b4ba
commit
ad99efedd7
5 changed files with 46 additions and 507 deletions
|
@ -99,13 +99,11 @@ rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
|||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
|
||||
|
||||
#FIXME
|
||||
#====================
|
||||
# Import ProcessFunc
|
||||
#====================
|
||||
from ProcessMultModelsCl import *
|
||||
|
||||
#from ProcessMultModelCl import *
|
||||
#%%
|
||||
# Multiple Classification - Model Pipeline
|
||||
def MultModelsCl(input_df, target, skf_cv
|
||||
|
@ -275,10 +273,10 @@ def MultModelsCl(input_df, target, skf_cv
|
|||
btyn_pos = btyn[1]
|
||||
|
||||
# Build dict
|
||||
tbtD = {'trainingY_neg' : tyn_neg
|
||||
, 'trainingY_pos' : tyn_pos
|
||||
, 'blindY_neg' : btyn_neg
|
||||
, 'blindY_pos' : btyn_pos}
|
||||
tbtD = {'n_trainingY_neg' : tyn_neg
|
||||
, 'n_trainingY_pos' : tyn_pos
|
||||
, 'n_blindY_neg' : btyn_neg
|
||||
, 'n_blindY_pos' : btyn_pos}
|
||||
|
||||
#---------------------------------
|
||||
# Update cv dict with cmD and tbtD
|
||||
|
@ -339,11 +337,11 @@ def MultModelsCl(input_df, target, skf_cv
|
|||
|
||||
mm_skf_scoresD[model_name]['resampling'] = resampling_type
|
||||
|
||||
mm_skf_scoresD[model_name]['training_size'] = len(input_df)
|
||||
mm_skf_scoresD[model_name]['trainingY_ratio'] = round(yc1_ratio, 2)
|
||||
mm_skf_scoresD[model_name]['n_training_size'] = len(input_df)
|
||||
mm_skf_scoresD[model_name]['n_trainingY_ratio'] = round(yc1_ratio, 2)
|
||||
|
||||
mm_skf_scoresD[model_name]['testSize'] = len(blind_test_df)
|
||||
mm_skf_scoresD[model_name]['testY_ratio'] = round(yc2_ratio,2)
|
||||
mm_skf_scoresD[model_name]['n_blind_test_size'] = len(blind_test_df)
|
||||
mm_skf_scoresD[model_name]['n_testY_ratio'] = round(yc2_ratio,2)
|
||||
mm_skf_scoresD[model_name]['n_features'] = len(input_df.columns)
|
||||
mm_skf_scoresD[model_name]['tts_split'] = tts_split_type
|
||||
|
||||
|
|
|
@ -1,467 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon Jun 20 13:05:23 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
import re
|
||||
#all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
|
||||
# X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
|
||||
# X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
|
||||
|
||||
|
||||
score_type_ordermapD = { 'mcc' : 1
|
||||
, 'fscore' : 2
|
||||
, 'jcc' : 3
|
||||
, 'precision' : 4
|
||||
, 'recall' : 5
|
||||
, 'accuracy' : 6
|
||||
, 'roc_auc' : 7
|
||||
, 'TN' : 8
|
||||
, 'FP' : 9
|
||||
, 'FN' : 10
|
||||
, 'TP' : 11
|
||||
, 'trainingY_neg': 12
|
||||
, 'trainingY_pos': 13
|
||||
, 'blindY_neg' : 14
|
||||
, 'blindY_pos' : 15
|
||||
, 'fit_time' : 16
|
||||
, 'score_time' : 17
|
||||
}
|
||||
###############################################################################
|
||||
#==================
|
||||
# Specify outdir
|
||||
#==================
|
||||
|
||||
outdir_ml = outdir + 'ml/uq_v1/fgs/'
|
||||
print('\nOutput directory:', outdir_ml)
|
||||
outFile = outdir_ml + gene.lower() + '_baseline_FG.csv'
|
||||
|
||||
#==================
|
||||
# other vars
|
||||
#==================
|
||||
tts_split_name = 'original'
|
||||
sampling_type_name = 'none'
|
||||
|
||||
###############################################################################
|
||||
#================
|
||||
# Evolutionary
|
||||
# X_evolFN
|
||||
#================
|
||||
feature_gp_nameEV = 'evolutionary'
|
||||
n_featuresEV = len(X_evolFN)
|
||||
|
||||
scores_mmEV = MultModelsCl(input_df = X[X_evolFN]
|
||||
, target = y
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts[X_evolFN]
|
||||
, blind_test_target = y_bts
|
||||
, add_cm = True
|
||||
, add_yn = True)
|
||||
|
||||
baseline_allEV = pd.DataFrame(scores_mmEV)
|
||||
|
||||
baseline_EV = baseline_allEV.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
|
||||
baseline_EV = baseline_EV.reset_index()
|
||||
baseline_EV.rename(columns = {'index': 'original_names'}, inplace = True)
|
||||
|
||||
# Indicate whether BT or CT
|
||||
bt_pattern = re.compile(r'bts_.*')
|
||||
baseline_EV['data_source'] = baseline_EV.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
|
||||
|
||||
baseline_EV['score_type'] = baseline_EV['original_names'].str.replace('bts_|test_', '', regex = True)
|
||||
|
||||
score_type_uniqueN = set(baseline_EV['score_type'])
|
||||
cL1 = list(score_type_ordermapD.keys())
|
||||
cL2 = list(score_type_uniqueN)
|
||||
|
||||
if set(cL1).issubset(cL2):
|
||||
print('\nPASS: sorting df by score that is mapped onto the order I want')
|
||||
baseline_EV['score_order'] = baseline_EV['score_type'].map(score_type_ordermapD)
|
||||
baseline_EV.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
|
||||
else:
|
||||
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
|
||||
|
||||
baseline_EV['feature_group'] = feature_gp_nameEV
|
||||
baseline_EV['sampling_type'] = sampling_type_name
|
||||
baseline_EV['tts_split'] = tts_split_name
|
||||
baseline_EV['n_features'] = n_featuresEV
|
||||
###############################################################################
|
||||
#================
|
||||
# Genomics
|
||||
# X_genomicFN
|
||||
#================
|
||||
feature_gp_nameGN = 'genomics'
|
||||
n_featuresGN = len(X_genomicFN)
|
||||
|
||||
scores_mmGN = MultModelsCl(input_df = X[X_genomicFN]
|
||||
, target = y
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts[X_genomicFN]
|
||||
, blind_test_target = y_bts
|
||||
, add_cm = True
|
||||
, add_yn = True)
|
||||
|
||||
baseline_allGN = pd.DataFrame(scores_mmGN)
|
||||
|
||||
baseline_GN = baseline_allGN.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
|
||||
baseline_GN = baseline_GN.reset_index()
|
||||
baseline_GN.rename(columns = {'index': 'original_names'}, inplace = True)
|
||||
|
||||
# Indicate whether BT or CT
|
||||
bt_pattern = re.compile(r'bts_.*')
|
||||
baseline_GN['data_source'] = baseline_GN.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
|
||||
|
||||
baseline_GN['score_type'] = baseline_GN['original_names'].str.replace('bts_|test_', '', regex = True)
|
||||
|
||||
score_type_uniqueN = set(baseline_GN['score_type'])
|
||||
cL1 = list(score_type_ordermapD.keys())
|
||||
cL2 = list(score_type_uniqueN)
|
||||
|
||||
if set(cL1).issubset(cL2):
|
||||
print('\nPASS: sorting df by score that is mapped onto the order I want')
|
||||
baseline_GN['score_order'] = baseline_GN['score_type'].map(score_type_ordermapD)
|
||||
baseline_GN.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
|
||||
else:
|
||||
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
|
||||
|
||||
baseline_GN['feature_group'] = feature_gp_nameGN
|
||||
baseline_GN['sampling_type'] = sampling_type_name
|
||||
baseline_GN['tts_split'] = tts_split_name
|
||||
baseline_GN['n_features'] = n_featuresGN
|
||||
###############################################################################
|
||||
#all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
|
||||
# X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
|
||||
# X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
|
||||
#================
|
||||
# Structural cols
|
||||
# X_structural_FN
|
||||
#================
|
||||
feature_gp_nameSTR = 'structural'
|
||||
n_featuresSTR = len(X_structural_FN)
|
||||
|
||||
scores_mmSTR = MultModelsCl(input_df = X[X_structural_FN]
|
||||
, target = y
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts[X_structural_FN]
|
||||
, blind_test_target = y_bts
|
||||
, add_cm = True
|
||||
, add_yn = True)
|
||||
|
||||
baseline_allSTR = pd.DataFrame(scores_mmSTR)
|
||||
|
||||
baseline_STR = baseline_allSTR.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
|
||||
baseline_STR = baseline_STR.reset_index()
|
||||
baseline_STR.rename(columns = {'index': 'original_names'}, inplace = True)
|
||||
|
||||
# Indicate whether BT or CT
|
||||
bt_pattern = re.compile(r'bts_.*')
|
||||
baseline_STR['data_source'] = baseline_STR.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
|
||||
|
||||
baseline_STR['score_type'] = baseline_STR['original_names'].str.replace('bts_|test_', '', regex = True)
|
||||
|
||||
score_type_uniqueN = set(baseline_STR['score_type'])
|
||||
cL1 = list(score_type_ordermapD.keys())
|
||||
cL2 = list(score_type_uniqueN)
|
||||
|
||||
if set(cL1).issubset(cL2):
|
||||
print('\nPASS: sorting df by score that is mapped onto the order I want')
|
||||
baseline_STR['score_order'] = baseline_STR['score_type'].map(score_type_ordermapD)
|
||||
baseline_STR.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
|
||||
else:
|
||||
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
|
||||
|
||||
baseline_STR['feature_group'] = feature_gp_nameSTR
|
||||
baseline_STR['sampling_type'] = sampling_type_name
|
||||
baseline_STR['tts_split'] = tts_split_name
|
||||
baseline_STR['n_features'] = n_featuresSTR
|
||||
##############################################################################
|
||||
#================
|
||||
# Stability cols
|
||||
# X_stability_FN
|
||||
#================
|
||||
feature_gp_nameSTB = 'stability'
|
||||
n_featuresSTB = len(X_stability_FN)
|
||||
|
||||
scores_mmSTB = MultModelsCl(input_df = X[X_stability_FN]
|
||||
, target = y
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts[X_stability_FN]
|
||||
, blind_test_target = y_bts
|
||||
, add_cm = True
|
||||
, add_yn = True)
|
||||
|
||||
baseline_allSTB = pd.DataFrame(scores_mmSTB)
|
||||
|
||||
baseline_STB = baseline_allSTB.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
|
||||
baseline_STB = baseline_STB.reset_index()
|
||||
baseline_STB.rename(columns = {'index': 'original_names'}, inplace = True)
|
||||
|
||||
# Indicate whether BT or CT
|
||||
bt_pattern = re.compile(r'bts_.*')
|
||||
baseline_STB['data_source'] = baseline_STB.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
|
||||
|
||||
baseline_STB['score_type'] = baseline_STB['original_names'].str.replace('bts_|test_', '', regex = True)
|
||||
|
||||
score_type_uniqueN = set(baseline_STB['score_type'])
|
||||
cL1 = list(score_type_ordermapD.keys())
|
||||
cL2 = list(score_type_uniqueN)
|
||||
|
||||
if set(cL1).issubset(cL2):
|
||||
print('\nPASS: sorting df by score that is mapped onto the order I want')
|
||||
baseline_STB['score_order'] = baseline_STB['score_type'].map(score_type_ordermapD)
|
||||
baseline_STB.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
|
||||
else:
|
||||
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
|
||||
|
||||
baseline_STB['feature_group'] = feature_gp_nameSTB
|
||||
baseline_STB['sampling_type'] = sampling_type_name
|
||||
baseline_STB['tts_split'] = tts_split_name
|
||||
baseline_STB['n_features'] = n_featuresSTB
|
||||
###############################################################################
|
||||
#================
|
||||
# Affinity cols
|
||||
# X_affinityFN
|
||||
#================
|
||||
feature_gp_nameAFF = 'affinity'
|
||||
n_featuresAFF = len(X_affinityFN)
|
||||
|
||||
scores_mmAFF = MultModelsCl(input_df = X[X_affinityFN]
|
||||
, target = y
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts[X_affinityFN]
|
||||
, blind_test_target = y_bts
|
||||
, add_cm = True
|
||||
, add_yn = True)
|
||||
|
||||
baseline_allAFF = pd.DataFrame(scores_mmAFF)
|
||||
|
||||
baseline_AFF = baseline_allAFF.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
|
||||
baseline_AFF = baseline_AFF.reset_index()
|
||||
baseline_AFF.rename(columns = {'index': 'original_names'}, inplace = True)
|
||||
|
||||
# Indicate whether BT or CT
|
||||
bt_pattern = re.compile(r'bts_.*')
|
||||
baseline_AFF['data_source'] = baseline_AFF.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
|
||||
|
||||
baseline_AFF['score_type'] = baseline_AFF['original_names'].str.replace('bts_|test_', '', regex = True)
|
||||
|
||||
score_type_uniqueN = set(baseline_AFF['score_type'])
|
||||
cL1 = list(score_type_ordermapD.keys())
|
||||
cL2 = list(score_type_uniqueN)
|
||||
|
||||
if set(cL1).issubset(cL2):
|
||||
print('\nPASS: sorting df by score that is mapped onto the order I want')
|
||||
baseline_AFF['score_order'] = baseline_AFF['score_type'].map(score_type_ordermapD)
|
||||
baseline_AFF.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
|
||||
else:
|
||||
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
|
||||
|
||||
baseline_AFF['feature_group'] = feature_gp_nameAFF
|
||||
baseline_AFF['sampling_type'] = sampling_type_name
|
||||
baseline_AFF['tts_split'] = tts_split_name
|
||||
baseline_AFF['n_features'] = n_featuresAFF
|
||||
###############################################################################
|
||||
#================
|
||||
# Residue level
|
||||
# X_resprop_FN
|
||||
#================
|
||||
feature_gp_nameRES = 'residue_prop'
|
||||
n_featuresRES = len(X_resprop_FN)
|
||||
|
||||
scores_mmRES = MultModelsCl(input_df = X[X_resprop_FN]
|
||||
, target = y
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts[X_resprop_FN]
|
||||
, blind_test_target = y_bts
|
||||
, add_cm = True
|
||||
, add_yn = True)
|
||||
|
||||
baseline_allRES = pd.DataFrame(scores_mmRES)
|
||||
|
||||
baseline_RES = baseline_allRES.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
|
||||
baseline_RES = baseline_RES.reset_index()
|
||||
baseline_RES.rename(columns = {'index': 'original_names'}, inplace = True)
|
||||
|
||||
# Indicate whether BT or CT
|
||||
bt_pattern = re.compile(r'bts_.*')
|
||||
baseline_RES['data_source'] = baseline_RES.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
|
||||
|
||||
baseline_RES['score_type'] = baseline_RES['original_names'].str.replace('bts_|test_', '', regex = True)
|
||||
|
||||
score_type_uniqueN = set(baseline_RES['score_type'])
|
||||
cL1 = list(score_type_ordermapD.keys())
|
||||
cL2 = list(score_type_uniqueN)
|
||||
|
||||
if set(cL1).issubset(cL2):
|
||||
print('\nPASS: sorting df by score that is mapped onto the order I want')
|
||||
baseline_RES['score_order'] = baseline_RES['score_type'].map(score_type_ordermapD)
|
||||
baseline_RES.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
|
||||
else:
|
||||
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
|
||||
|
||||
baseline_RES['feature_group'] = feature_gp_nameRES
|
||||
baseline_RES['sampling_type'] = sampling_type_name
|
||||
baseline_RES['tts_split'] = tts_split_name
|
||||
baseline_RES['n_features'] = n_featuresRES
|
||||
###############################################################################
|
||||
#================
|
||||
# Residue level-AAindex
|
||||
#X_resprop_FN - X_aaindex_Fnum
|
||||
#================
|
||||
X_respropNOaaFN = list(set(X_resprop_FN) - set(X_aaindex_Fnum))
|
||||
|
||||
feature_gp_nameRNAA = 'ResPropNoAA'
|
||||
n_featuresRNAA = len(X_respropNOaaFN)
|
||||
|
||||
scores_mmRNAA = MultModelsCl(input_df = X[X_respropNOaaFN]
|
||||
, target = y
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts[X_respropNOaaFN]
|
||||
, blind_test_target = y_bts
|
||||
, add_cm = True
|
||||
, add_yn = True)
|
||||
|
||||
baseline_allRNAA = pd.DataFrame(scores_mmRNAA)
|
||||
|
||||
baseline_RNAA = baseline_allRNAA.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
|
||||
baseline_RNAA = baseline_RNAA.reset_index()
|
||||
baseline_RNAA.rename(columns = {'index': 'original_names'}, inplace = True)
|
||||
|
||||
# Indicate whether BT or CT
|
||||
bt_pattern = re.compile(r'bts_.*')
|
||||
baseline_RNAA['data_source'] = baseline_RNAA.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
|
||||
|
||||
baseline_RNAA['score_type'] = baseline_RNAA['original_names'].str.replace('bts_|test_', '', regex = True)
|
||||
|
||||
score_type_uniqueN = set(baseline_RNAA['score_type'])
|
||||
cL1 = list(score_type_ordermapD.keys())
|
||||
cL2 = list(score_type_uniqueN)
|
||||
|
||||
if set(cL1).issubset(cL2):
|
||||
print('\nPASS: sorting df by score that is mapped onto the order I want')
|
||||
baseline_RNAA['score_order'] = baseline_RNAA['score_type'].map(score_type_ordermapD)
|
||||
baseline_RNAA.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
|
||||
else:
|
||||
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
|
||||
|
||||
baseline_RNAA['feature_group'] = feature_gp_nameRNAA
|
||||
baseline_RNAA['sampling_type'] = sampling_type_name
|
||||
baseline_RNAA['tts_split'] = tts_split_name
|
||||
baseline_RNAA['n_features'] = n_featuresRNAA
|
||||
###############################################################################
|
||||
#================
|
||||
# Structural cols-AAindex
|
||||
#X_structural_FN - X_aaindex_Fnum
|
||||
#================
|
||||
X_strNOaaFN = list(set(X_structural_FN) - set(X_aaindex_Fnum))
|
||||
|
||||
feature_gp_nameSNAA = 'StrNoAA'
|
||||
n_featuresSNAA = len(X_strNOaaFN)
|
||||
|
||||
scores_mmSNAA = MultModelsCl(input_df = X[X_strNOaaFN]
|
||||
, target = y
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts[X_strNOaaFN]
|
||||
, blind_test_target = y_bts
|
||||
, add_cm = True
|
||||
, add_yn = True)
|
||||
|
||||
baseline_allSNAA = pd.DataFrame(scores_mmSNAA)
|
||||
|
||||
baseline_SNAA = baseline_allSNAA.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
|
||||
baseline_SNAA = baseline_SNAA.reset_index()
|
||||
baseline_SNAA.rename(columns = {'index': 'original_names'}, inplace = True)
|
||||
|
||||
# Indicate whether BT or CT
|
||||
bt_pattern = re.compile(r'bts_.*')
|
||||
baseline_SNAA['data_source'] = baseline_SNAA.apply(lambda row: 'BT' if bt_pattern.search(row.original_names) else 'CV' , axis = 1)
|
||||
|
||||
baseline_SNAA['score_type'] = baseline_SNAA['original_names'].str.replace('bts_|test_', '', regex = True)
|
||||
|
||||
score_type_uniqueN = set(baseline_SNAA['score_type'])
|
||||
cL1 = list(score_type_ordermapD.keys())
|
||||
cL2 = list(score_type_uniqueN)
|
||||
|
||||
if set(cL1).issubset(cL2):
|
||||
print('\nPASS: sorting df by score that is mapped onto the order I want')
|
||||
baseline_SNAA['score_order'] = baseline_SNAA['score_type'].map(score_type_ordermapD)
|
||||
baseline_SNAA.sort_values(by = ['data_source', 'score_order'], ascending = [True, True], inplace = True)
|
||||
else:
|
||||
sys.exit('\nFAIL: could not sort df as score mapping for ordering failed')
|
||||
|
||||
baseline_SNAA['feature_group'] = feature_gp_nameSNAA
|
||||
baseline_SNAA['sampling_type'] = sampling_type_name
|
||||
baseline_SNAA['tts_split'] = tts_split_name
|
||||
baseline_SNAA['n_features'] = n_featuresSNAA
|
||||
###############################################################################
|
||||
#%% COMBINING all FG dfs
|
||||
#================
|
||||
# Combine all
|
||||
# https://stackoverflow.com/questions/39862654/pandas-concat-of-multiple-data-frames-using-only-common-columns
|
||||
#================
|
||||
dfs_combine = [baseline_EV, baseline_GN, baseline_STR, baseline_STB, baseline_AFF, baseline_RES , baseline_RNAA , baseline_SNAA]
|
||||
|
||||
dfs_nrows = []
|
||||
for df in dfs_combine:
|
||||
dfs_nrows = dfs_nrows + [len(df)]
|
||||
dfs_nrows = max(dfs_nrows)
|
||||
|
||||
dfs_ncols = []
|
||||
for df in dfs_combine:
|
||||
dfs_ncols = dfs_ncols + [len(df.columns)]
|
||||
dfs_ncols = max(dfs_ncols)
|
||||
|
||||
# dfs_ncols = []
|
||||
# dfs_ncols2 = mode(dfs_ncols.append(len(df.columns) for df in dfs_combine)
|
||||
# dfs_ncols2
|
||||
|
||||
expected_nrows = len(dfs_combine) * dfs_nrows
|
||||
expected_ncols = dfs_ncols
|
||||
|
||||
common_cols = list(set.intersection(*(set(df.columns) for df in dfs_combine)))
|
||||
|
||||
if len(common_cols) == dfs_ncols :
|
||||
combined_FG_baseline = pd.concat([df[common_cols] for df in dfs_combine], ignore_index=True)
|
||||
fgs = combined_FG_baseline[['feature_group', 'n_features']]
|
||||
fgs = fgs.drop_duplicates()
|
||||
print('\nConcatenating dfs with feature groups after ML analysis (sampling type):'
|
||||
, '\nNo. of dfs combining:', len(dfs_combine)
|
||||
, '\nSampling type:', sampling_type
|
||||
, '\nThe feature groups are:'
|
||||
, '\n', fgs)
|
||||
if len(combined_FG_baseline) == expected_nrows and len(combined_FG_baseline.columns) == expected_ncols:
|
||||
print('\nPASS:', len(dfs_combine), 'dfs successfully combined'
|
||||
, '\nnrows in combined_df:', len(combined_FG_baseline)
|
||||
, '\nncols in combined_df:', len(combined_FG_baseline.columns))
|
||||
else:
|
||||
print('\nFAIL: concatenating failed'
|
||||
, '\nExpected nrows:', expected_nrows
|
||||
, '\nGot:', len(combined_FG_baseline)
|
||||
, '\nExpected ncols:', expected_ncols
|
||||
, '\nGot:', len(combined_FG_baseline.columns))
|
||||
sys.exit()
|
||||
else:
|
||||
sys.exit('\nConcatenting dfs not possible,check numbers ')
|
||||
|
||||
# # rpow bind
|
||||
# if all(ll((baseline_EV.columns == baseline_GN.columns == baseline_STR.columns)):
|
||||
# print('\nPASS:colnames match, proceeding to rowbind')
|
||||
# comb_df = pd.concat()], axis = 0, ignore_index = True )
|
||||
###############################################################################
|
||||
#====================
|
||||
# Write output file
|
||||
#====================
|
||||
|
||||
combined_FG_baseline.to_csv(outFile)
|
||||
print('\nFile successfully written:', outFile)
|
||||
###############################################################################
|
|
@ -5,9 +5,27 @@ Created on Thu Jun 23 20:39:20 2022
|
|||
|
||||
@author: tanu
|
||||
"""
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import re
|
||||
##############################################################################
|
||||
#%% FUNCTION: Process outout dicr from MultModelsCl
|
||||
def ProcessMultModelsCl(inputD = {}):
|
||||
|
||||
def ProcessMultModelCl(inputD = {}):
|
||||
scoresDF = pd.DataFrame(inputD)
|
||||
|
||||
#------------------------
|
||||
# Extracting split_name
|
||||
#-----------------------
|
||||
tts_split_nameL = []
|
||||
for k,v in inputD.items():
|
||||
tts_split_nameL = tts_split_nameL + [v['tts_split']]
|
||||
|
||||
if len(set(tts_split_nameL)) == 1:
|
||||
tts_split_name = str(list(set(tts_split_nameL))[0])
|
||||
print('\nExtracting tts_split_name:', tts_split_name)
|
||||
|
||||
#------------------------
|
||||
# WF: only CV and BTS
|
||||
#-----------------------
|
||||
|
@ -28,7 +46,7 @@ def ProcessMultModelCl(inputD = {}):
|
|||
|
||||
#baseline_all = baseline_all_scores.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
|
||||
|
||||
metaDF = scoresDFT.filter(regex='training_size|testSize|_time|TN|FP|FN|TP|.*_neg|.*_pos|resampling', axis = 1); scoresDF_BT.columns
|
||||
metaDF = scoresDFT.filter(regex='training_size|blind_test_size|_time|TN|FP|FN|TP|.*_neg|.*_pos|resampling', axis = 1); scoresDF_BT.columns
|
||||
|
||||
#-----------------
|
||||
# Combine WF
|
||||
|
@ -38,8 +56,10 @@ def ProcessMultModelCl(inputD = {}):
|
|||
print(scoresDF_CV)
|
||||
print(scoresDF_BT)
|
||||
|
||||
print('\nCV dim:', scoresDF_CV.shape
|
||||
, '\nBT dim:',scoresDF_BT.shape)
|
||||
print('\nCombinig', len(dfs_combine_wf), 'using pd.concat by row ~ rowbind'
|
||||
, '\nChecking Dims of df to combine:'
|
||||
, '\nDim of CV:', scoresDF_CV.shape
|
||||
, '\nDim of BT:', scoresDF_BT.shape)
|
||||
|
||||
|
||||
dfs_nrows_wf = []
|
||||
|
@ -57,14 +77,15 @@ def ProcessMultModelCl(inputD = {}):
|
|||
expected_ncols_wf = dfs_ncols_wf
|
||||
|
||||
common_cols_wf = list(set.intersection(*(set(df.columns) for df in dfs_combine_wf)))
|
||||
print('\nCOMMON COLS:', common_cols_wf
|
||||
print('\nFinding Common cols to ensure row bind is correct:', len(common_cols_wf)
|
||||
, '\nCOMMON cols are:', common_cols_wf
|
||||
, dfs_ncols_wf)
|
||||
|
||||
if len(common_cols_wf) == dfs_ncols_wf :
|
||||
combined_baseline_wf = pd.concat([df[common_cols_wf] for df in dfs_combine_wf], ignore_index=False)
|
||||
#resampling_methods_wf = combined_baseline_wf[['resampling']]
|
||||
#resampling_methods_wf = resampling_methods_wf.drop_duplicates()
|
||||
print('\nConcatenating dfs with different resampling methods [WF]:', tts_split
|
||||
print('\nConcatenating dfs with different resampling methods [WF]:', tts_split_name
|
||||
, '\nNo. of dfs combining:', len(dfs_combine_wf))
|
||||
print('\n================================================^^^^^^^^^^^^')
|
||||
if len(combined_baseline_wf) == expected_nrows_wf and len(combined_baseline_wf.columns) == expected_ncols_wf:
|
||||
|
@ -92,18 +113,4 @@ def ProcessMultModelCl(inputD = {}):
|
|||
|
||||
return combDF
|
||||
|
||||
|
||||
# test
|
||||
|
||||
#ProcessMultModelCl(smnc_scores_mmD)
|
||||
bazDF = MultModelsCl(input_df = X_smnc
|
||||
, target = y_smnc
|
||||
, var_type = 'mixed'
|
||||
, tts_split_type = tts_split_7030
|
||||
, resampling_type = 'smnc'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_df = X_bts
|
||||
, blind_test_target = y_bts
|
||||
, add_cm = True
|
||||
, add_yn = True
|
||||
, return_formatted_output = True)
|
||||
###############################################################################
|
||||
|
|
|
@ -175,7 +175,9 @@ smnc_scores_mmD = MultModelsCl(input_df = X_smnc
|
|||
, blind_test_df = X_bts
|
||||
, blind_test_target = y_bts
|
||||
, add_cm = True
|
||||
, add_yn = True)
|
||||
, add_yn = True
|
||||
, return_formatted_output = True):
|
||||
)
|
||||
|
||||
smnc_all_scores = pd.DataFrame(smnc_scores_mmD)
|
||||
rs_smnc = 'smnc'
|
||||
|
|
|
@ -248,8 +248,7 @@ with open(OutFileFS, 'w') as f:
|
|||
# , cls = NpEncoder
|
||||
))
|
||||
|
||||
# # read json
|
||||
# with open(OutFileFS, 'r') as f:
|
||||
# data = json.load(f)
|
||||
# read json
|
||||
with open(OutFileFS, 'r') as f:data = json.load(f)
|
||||
##############################################################################
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue