saving work
This commit is contained in:
parent
3514e1b4ba
commit
ad99efedd7
5 changed files with 46 additions and 507 deletions
|
@ -5,9 +5,27 @@ Created on Thu Jun 23 20:39:20 2022
|
|||
|
||||
@author: tanu
|
||||
"""
|
||||
|
||||
def ProcessMultModelCl(inputD = {}):
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import re
|
||||
##############################################################################
|
||||
#%% FUNCTION: Process outout dicr from MultModelsCl
|
||||
def ProcessMultModelsCl(inputD = {}):
|
||||
|
||||
scoresDF = pd.DataFrame(inputD)
|
||||
|
||||
#------------------------
|
||||
# Extracting split_name
|
||||
#-----------------------
|
||||
tts_split_nameL = []
|
||||
for k,v in inputD.items():
|
||||
tts_split_nameL = tts_split_nameL + [v['tts_split']]
|
||||
|
||||
if len(set(tts_split_nameL)) == 1:
|
||||
tts_split_name = str(list(set(tts_split_nameL))[0])
|
||||
print('\nExtracting tts_split_name:', tts_split_name)
|
||||
|
||||
#------------------------
|
||||
# WF: only CV and BTS
|
||||
#-----------------------
|
||||
|
@ -28,7 +46,7 @@ def ProcessMultModelCl(inputD = {}):
|
|||
|
||||
#baseline_all = baseline_all_scores.filter(regex = 'bts_.*|test_.*|.*_time|TN|FP|FN|TP|.*_neg|.*_pos', axis = 0)
|
||||
|
||||
metaDF = scoresDFT.filter(regex='training_size|testSize|_time|TN|FP|FN|TP|.*_neg|.*_pos|resampling', axis = 1); scoresDF_BT.columns
|
||||
metaDF = scoresDFT.filter(regex='training_size|blind_test_size|_time|TN|FP|FN|TP|.*_neg|.*_pos|resampling', axis = 1); scoresDF_BT.columns
|
||||
|
||||
#-----------------
|
||||
# Combine WF
|
||||
|
@ -38,8 +56,10 @@ def ProcessMultModelCl(inputD = {}):
|
|||
print(scoresDF_CV)
|
||||
print(scoresDF_BT)
|
||||
|
||||
print('\nCV dim:', scoresDF_CV.shape
|
||||
, '\nBT dim:',scoresDF_BT.shape)
|
||||
print('\nCombinig', len(dfs_combine_wf), 'using pd.concat by row ~ rowbind'
|
||||
, '\nChecking Dims of df to combine:'
|
||||
, '\nDim of CV:', scoresDF_CV.shape
|
||||
, '\nDim of BT:', scoresDF_BT.shape)
|
||||
|
||||
|
||||
dfs_nrows_wf = []
|
||||
|
@ -57,14 +77,15 @@ def ProcessMultModelCl(inputD = {}):
|
|||
expected_ncols_wf = dfs_ncols_wf
|
||||
|
||||
common_cols_wf = list(set.intersection(*(set(df.columns) for df in dfs_combine_wf)))
|
||||
print('\nCOMMON COLS:', common_cols_wf
|
||||
print('\nFinding Common cols to ensure row bind is correct:', len(common_cols_wf)
|
||||
, '\nCOMMON cols are:', common_cols_wf
|
||||
, dfs_ncols_wf)
|
||||
|
||||
if len(common_cols_wf) == dfs_ncols_wf :
|
||||
combined_baseline_wf = pd.concat([df[common_cols_wf] for df in dfs_combine_wf], ignore_index=False)
|
||||
#resampling_methods_wf = combined_baseline_wf[['resampling']]
|
||||
#resampling_methods_wf = resampling_methods_wf.drop_duplicates()
|
||||
print('\nConcatenating dfs with different resampling methods [WF]:', tts_split
|
||||
print('\nConcatenating dfs with different resampling methods [WF]:', tts_split_name
|
||||
, '\nNo. of dfs combining:', len(dfs_combine_wf))
|
||||
print('\n================================================^^^^^^^^^^^^')
|
||||
if len(combined_baseline_wf) == expected_nrows_wf and len(combined_baseline_wf.columns) == expected_ncols_wf:
|
||||
|
@ -92,18 +113,4 @@ def ProcessMultModelCl(inputD = {}):
|
|||
|
||||
return combDF
|
||||
|
||||
|
||||
# test
|
||||
|
||||
#ProcessMultModelCl(smnc_scores_mmD)
|
||||
bazDF = MultModelsCl(input_df = X_smnc
|
||||
, target = y_smnc
|
||||
, var_type = 'mixed'
|
||||
, tts_split_type = tts_split_7030
|
||||
, resampling_type = 'smnc'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_df = X_bts
|
||||
, blind_test_target = y_bts
|
||||
, add_cm = True
|
||||
, add_yn = True
|
||||
, return_formatted_output = True)
|
||||
###############################################################################
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue