separated plotting_thesis for generating plots
This commit is contained in:
parent
95131abc3c
commit
ad2e538ec2
11 changed files with 2807 additions and 0 deletions
163
scripts/plotting/mcsm_mean_stability.R
Executable file
163
scripts/plotting/mcsm_mean_stability.R
Executable file
|
@ -0,0 +1,163 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
#########################################################
|
||||
# TASK:
|
||||
|
||||
#########################################################
|
||||
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
|
||||
#require(data.table)
|
||||
#require(dplyr)
|
||||
|
||||
source("plotting_data.R")
|
||||
# should return
|
||||
#my_df
|
||||
#my_df_u
|
||||
#dup_muts
|
||||
|
||||
# cmd parse arguments
|
||||
#require('getopt', quietly = TRUE)
|
||||
#========================================================
|
||||
|
||||
|
||||
#========================================================
|
||||
# Read file: call script for combining df for PS
|
||||
|
||||
#source("../combining_two_df.R")
|
||||
|
||||
#========================================================
|
||||
|
||||
# plotting_data.R imports all the dir names, etc
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
out_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
|
||||
outfile_mean_stability = paste0(outdir, "/", out_filename_mean_stability)
|
||||
print(paste0("Output file:", outfile_mean_stability))
|
||||
|
||||
#%%===============================================================
|
||||
|
||||
#================
|
||||
# Data for plots
|
||||
#================
|
||||
# REASSIGNMENT as necessary
|
||||
df = my_df_u
|
||||
rm(my_df)
|
||||
|
||||
###########################
|
||||
# Data for bfactor figure
|
||||
# PS (duet) average
|
||||
# Ligand affinity average
|
||||
###########################
|
||||
head(df$position); head(df$mutationinformation)
|
||||
head(df$duet_stability_change)
|
||||
|
||||
# order data frame
|
||||
#df = df[order(df$position),] #already done
|
||||
#head(df$position); head(df$mutationinformation)
|
||||
#head(df$duet_stability_change)
|
||||
|
||||
#***********
|
||||
# PS(duet): average by position and then scale b/w -1 and 1
|
||||
# column to average: duet_stability_change (NOT scaled!)
|
||||
#***********
|
||||
mean_duet_by_position <- df %>%
|
||||
group_by(position) %>%
|
||||
summarize(averaged_duet = mean(duet_stability_change))
|
||||
|
||||
# scale b/w -1 and 1
|
||||
duet_min = min(mean_duet_by_position['averaged_duet'])
|
||||
duet_max = max(mean_duet_by_position['averaged_duet'])
|
||||
|
||||
# scale the averaged_duet values
|
||||
mean_duet_by_position['averaged_duet_scaled'] = lapply(mean_duet_by_position['averaged_duet']
|
||||
, function(x) ifelse(x < 0, x/abs(duet_min), x/duet_max))
|
||||
|
||||
cat(paste0('Average duet scores:\n', head(mean_duet_by_position['averaged_duet'])
|
||||
, '\n---------------------------------------------------------------'
|
||||
, '\nScaled duet scores:\n', head(mean_duet_by_position['averaged_duet_scaled'])))
|
||||
|
||||
# sanity checks
|
||||
l_bound_duet = min(mean_duet_by_position['averaged_duet_scaled'])
|
||||
u_bound_duet = max(mean_duet_by_position['averaged_duet_scaled'])
|
||||
|
||||
if ( (l_bound_duet == -1) && (u_bound_duet == 1) ){
|
||||
cat(paste0("PASS: duet scores averaged by position and then scaled"
|
||||
, "\nmin averaged duet: ", l_bound_duet
|
||||
, "\nmax averaged duet: ", u_bound_duet))
|
||||
}else{
|
||||
cat(paste0("FAIL: avergaed duet scores could not be scaled b/w -1 and 1"
|
||||
, "\nmin averaged duet: ", l_bound_duet
|
||||
, "\nmax averaged duet: ", u_bound_duet))
|
||||
quit()
|
||||
}
|
||||
|
||||
#***********
|
||||
# Lig: average by position and then scale b/w -1 and 1
|
||||
# column: ligand_affinity_change (NOT scaled!)
|
||||
#***********
|
||||
mean_affinity_by_position <- df %>%
|
||||
group_by(position) %>%
|
||||
summarize(averaged_affinity = mean(ligand_affinity_change))
|
||||
|
||||
# scale b/w -1 and 1
|
||||
affinity_min = min(mean_affinity_by_position['averaged_affinity'])
|
||||
affinity_max = max(mean_affinity_by_position['averaged_affinity'])
|
||||
|
||||
# scale the averaged_affinity values
|
||||
mean_affinity_by_position['averaged_affinity_scaled'] = lapply(mean_affinity_by_position['averaged_affinity']
|
||||
, function(x) ifelse(x < 0, x/abs(affinity_min), x/affinity_max))
|
||||
|
||||
cat(paste0('Average affinity scores:\n', head(mean_affinity_by_position['averaged_affinity'])
|
||||
, '\n---------------------------------------------------------------'
|
||||
, '\nScaled affinity scores:\n', head(mean_affinity_by_position['averaged_affinity_scaled'])))
|
||||
|
||||
# sanity checks
|
||||
l_bound_affinity = min(mean_affinity_by_position['averaged_affinity_scaled'])
|
||||
u_bound_affinity = max(mean_affinity_by_position['averaged_affinity_scaled'])
|
||||
|
||||
if ( (l_bound_affinity == -1) && (u_bound_affinity == 1) ){
|
||||
cat(paste0("PASS: affinity scores averaged by position and then scaled"
|
||||
, "\nmin averaged affintiy: ", l_bound_affinity
|
||||
, "\nmax averaged affintiy: ", u_bound_affinity))
|
||||
}else{
|
||||
cat(paste0("FAIL: avergaed affinity scores could not be scaled b/w -1 and 1"
|
||||
, "\nmin averaged affintiy: ", l_bound_affinity
|
||||
, "\nmax averaged affintiy: ", u_bound_affinity))
|
||||
quit()
|
||||
}
|
||||
|
||||
#***********
|
||||
# merge: mean_duet_by_position and mean_affinity_by_position
|
||||
#***********
|
||||
common_cols = intersect(colnames(mean_duet_by_position), colnames(mean_affinity_by_position))
|
||||
|
||||
if (dim(mean_duet_by_position) && dim(mean_affinity_by_position)){
|
||||
print(paste0("PASS: dim's match, mering dfs by column :", common_cols))
|
||||
#combined = as.data.frame(cbind(mean_duet_by_position, mean_affinity_by_position ))
|
||||
combined_df = as.data.frame(merge(mean_duet_by_position
|
||||
, mean_affinity_by_position
|
||||
, by = common_cols
|
||||
, all = T))
|
||||
|
||||
cat(paste0("\nnrows combined_df:", nrow(combined_df)
|
||||
, "\nnrows combined_df:", ncol(combined_df)))
|
||||
}else{
|
||||
cat(paste0("FAIL: dim's mismatch, aborting cbind!"
|
||||
, "\nnrows df1:", nrow(mean_duet_by_position)
|
||||
, "\nnrows df2:", nrow(mean_affinity_by_position)))
|
||||
quit()
|
||||
}
|
||||
#%%============================================================
|
||||
# output
|
||||
write.csv(combined_df, outfile_mean_stability
|
||||
, row.names = F)
|
||||
cat("Finished writing file:\n"
|
||||
, outfile_mean_stability
|
||||
, "\nNo. of rows:", nrow(combined_df)
|
||||
, "\nNo. of cols:", ncol(combined_df))
|
||||
|
||||
# end of script
|
||||
#===============================================================
|
406
scripts/plotting/plotting_thesis/basic_barplots.R
Executable file
406
scripts/plotting/plotting_thesis/basic_barplots.R
Executable file
|
@ -0,0 +1,406 @@
|
|||
#!/usr/bin/env Rscript
|
||||
#########################################################
|
||||
# TASK: Barplots for mCSM DUET, ligand affinity, and foldX
|
||||
# basic barplots with count of mutations
|
||||
# basic barplots with frequency of count of mutations
|
||||
|
||||
# , df_colname = ""
|
||||
# , leg_title = ""
|
||||
# , ats = 25 # axis text size
|
||||
# , als = 22 # axis label size
|
||||
# , lts = 20 # legend text size
|
||||
# , ltis = 22 # label title size
|
||||
# , geom_ls = 10 # geom_label size
|
||||
# , yaxis_title = "Number of nsSNPs"
|
||||
# , bp_plot_title = ""
|
||||
# , label_categories = c("Destabilising", "Stabilising")
|
||||
# , title_colour = "chocolate4"
|
||||
# , subtitle_text = NULL
|
||||
# , sts = 20
|
||||
# , subtitle_colour = "pink"
|
||||
# #, leg_position = c(0.73,0.8) # within plot area
|
||||
# , leg_position = "top"
|
||||
# , bar_fill_values = c("#F8766D", "#00BFC4")
|
||||
#########################################################
|
||||
|
||||
#=======================================================================
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
outdir_images = paste0("~/git/Writing/thesis/images/results/"
|
||||
, tolower(gene), "/")
|
||||
cat("plots will output to:", outdir_images)
|
||||
|
||||
###########################################################
|
||||
df3 = merged_df3
|
||||
# FIXME: port to a common script
|
||||
#=================
|
||||
# PREFORMATTING: for consistency
|
||||
#=================
|
||||
df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S")
|
||||
table(df3$sensitivity)
|
||||
|
||||
# ConSurf labels
|
||||
consurf_colOld = "consurf_colour_rev"
|
||||
consurf_colNew = "consurf_outcome"
|
||||
df3[[consurf_colNew]] = df3[[consurf_colOld]]
|
||||
df3[[consurf_colNew]] = as.factor(df3[[consurf_colNew]])
|
||||
df3[[consurf_colNew]]
|
||||
levels(df3$consurf_outcome) = c( "nsd", 1, 2, 3, 4, 5, 6, 7, 8, 9)
|
||||
levels(df3$consurf_outcome)
|
||||
|
||||
# SNAP2 labels
|
||||
snap2_colname = "snap2_outcome"
|
||||
df3[[snap2_colname]] <- str_replace(df3[[snap2_colname]], "effect", "Effect")
|
||||
df3[[snap2_colname]] <- str_replace(df3[[snap2_colname]], "neutral", "Neutral")
|
||||
|
||||
##############################################################
|
||||
gene_all_cols = colnames(df3)[colnames(df3)%in%all_cols]
|
||||
|
||||
gene_outcome_cols = colnames(df3)[colnames(df3)%in%c(outcome_cols_stability
|
||||
, outcome_cols_affinity
|
||||
, outcome_cols_conservation)]
|
||||
gene_outcome_cols
|
||||
|
||||
|
||||
#=======================================================================
|
||||
#------------------------------
|
||||
# stability barplots:
|
||||
outcome_cols_stability
|
||||
# label_categories should be = levels(as.factor(plot_df[[df_colname]]))
|
||||
#------------------------------
|
||||
sts = 22
|
||||
subtitle_colour = "black"
|
||||
geom_ls = 10
|
||||
|
||||
# duetP
|
||||
duetP = stability_count_bp(plotdf = df3
|
||||
, df_colname = "duet_outcome"
|
||||
, leg_title = "mCSM-DUET"
|
||||
#, label_categories = labels_duet
|
||||
, yaxis_title = "Number of nsSNPs"
|
||||
, leg_position = "none"
|
||||
, subtitle_text = "mCSM-DUET"
|
||||
, geom_ls = geom_ls
|
||||
, bar_fill_values = c("#F8766D", "#00BFC4")
|
||||
, sts = sts
|
||||
, subtitle_colour= subtitle_colour)
|
||||
|
||||
# foldx
|
||||
foldxP = stability_count_bp(plotdf = df3
|
||||
, df_colname = "foldx_outcome"
|
||||
#, leg_title = "FoldX"
|
||||
#, label_categories = labels_foldx
|
||||
, yaxis_title = ""
|
||||
, leg_position = "none"
|
||||
, subtitle_text = "FoldX"
|
||||
, geom_ls = geom_ls
|
||||
, bar_fill_values = c("#F8766D", "#00BFC4")
|
||||
, sts = sts
|
||||
, subtitle_colour= subtitle_colour)
|
||||
|
||||
|
||||
# deepddg
|
||||
deepddgP = stability_count_bp(plotdf = df3
|
||||
, df_colname = "deepddg_outcome"
|
||||
#, leg_title = "DeepDDG"
|
||||
#, label_categories = labels_deepddg
|
||||
, yaxis_title = "Number of nsSNPs"
|
||||
, leg_position = "none"
|
||||
, subtitle_text = "DeepDDG"
|
||||
, geom_ls = geom_ls
|
||||
, bar_fill_values = c("#F8766D", "#00BFC4")
|
||||
, sts = sts
|
||||
, subtitle_colour= subtitle_colour)
|
||||
|
||||
|
||||
# deepddg
|
||||
dynamut2P = stability_count_bp(plotdf = df3
|
||||
, df_colname = "ddg_dynamut2_outcome"
|
||||
#, leg_title = "Dynamut2"
|
||||
#, label_categories = labels_ddg_dynamut2_outcome
|
||||
, yaxis_title = ""
|
||||
, leg_position = "none"
|
||||
, subtitle_text = "Dynamut2"
|
||||
, geom_ls = geom_ls
|
||||
, bar_fill_values = c("#F8766D", "#00BFC4")
|
||||
, sts = sts
|
||||
, subtitle_colour= subtitle_colour)
|
||||
|
||||
dynamut2P
|
||||
|
||||
# extract common legend
|
||||
common_legend = get_legend(duetP +
|
||||
guides(color = guide_legend(nrow = 1)) +
|
||||
theme(legend.position = "top"))
|
||||
|
||||
#==========================
|
||||
# output: STABILITY PLOTS
|
||||
#===========================
|
||||
bp_stability_CLP = paste0(outdir_images
|
||||
, tolower(gene)
|
||||
,"_bp_stability_CL.svg")
|
||||
|
||||
svg(bp_stability_CLP, width = 15, height = 12)
|
||||
print(paste0("plot filename:", bp_stability_CLP))
|
||||
|
||||
cowplot::plot_grid(
|
||||
common_legend,
|
||||
cowplot::plot_grid(duetP, foldxP
|
||||
, deepddgP, dynamut2P
|
||||
, nrow = 2
|
||||
, ncol = 2
|
||||
#, labels = c("(a)", "(b)", "(c)", "(d)")
|
||||
, labels = "AUTO"
|
||||
, label_size = 25)
|
||||
, ncol = 1
|
||||
, nrow = 2
|
||||
, rel_heights = c(0.4/10,9/10))
|
||||
|
||||
dev.off()
|
||||
###########################################################
|
||||
#=========================
|
||||
# Affinity outcome
|
||||
# check this var: outcome_cols_affinity
|
||||
# get from preformatting or put in globals
|
||||
#==========================
|
||||
DistCutOff = 10
|
||||
LigDist_colname # = "ligand_distance" # from globals
|
||||
ppi2Dist_colname = "interface_dist"
|
||||
naDist_colname = "TBC"
|
||||
|
||||
###########################################################
|
||||
# get plotting data within the distance
|
||||
df3_lig = df3[df3[[LigDist_colname]]<DistCutOff,]
|
||||
df3_ppi2 = df3[df3[[ppi2Dist_colname]]<DistCutOff,]
|
||||
df3_na = df3[df3[[naDist_colname]]<DistCutOff,]
|
||||
common_bp_title = paste0("Sites <", DistCutOff, angstroms_symbol)
|
||||
|
||||
#------------------------------
|
||||
# barplot for ligand affinity:
|
||||
# <10 Ang of ligand
|
||||
#------------------------------
|
||||
mLigP = stability_count_bp(plotdf = df3_lig
|
||||
, df_colname = "ligand_outcome"
|
||||
#, leg_title = "mCSM-lig"
|
||||
#, label_categories = labels_lig
|
||||
, yaxis_title = "Number of nsSNPs"
|
||||
, leg_position = "none"
|
||||
, subtitle_text = "mCSM-lig"
|
||||
, geom_ls = geom_ls
|
||||
, bar_fill_values = c("#F8766D", "#00BFC4")
|
||||
, sts = sts
|
||||
, subtitle_colour= subtitle_colour
|
||||
, bp_plot_title = paste(common_bp_title, "ligand")
|
||||
)
|
||||
|
||||
#------------------------------
|
||||
# barplot for ligand affinity:
|
||||
# <10 Ang of ligand
|
||||
# mmCSM-lig: will be the same no. of sites but the effect will be different
|
||||
#------------------------------
|
||||
mmLigP = stability_count_bp(plotdf = df3_lig
|
||||
, df_colname = "mmcsm_lig_outcome"
|
||||
#, leg_title = "mmCSM-lig"
|
||||
#, label_categories = labels_mmlig
|
||||
, yaxis_title = ""
|
||||
, leg_position = "none"
|
||||
, subtitle_text = "mmCSM-lig"
|
||||
, geom_ls = geom_ls
|
||||
, bar_fill_values = c("#F8766D", "#00BFC4")
|
||||
, sts = sts
|
||||
, subtitle_colour= subtitle_colour
|
||||
, bp_plot_title = paste(common_bp_title, "ligand")
|
||||
)
|
||||
|
||||
#------------------------------
|
||||
# barplot for ppi2 affinity
|
||||
# <10 Ang of interface
|
||||
#------------------------------
|
||||
ppi2P = stability_count_bp(plotdf = df3_ppi2
|
||||
, df_colname = "mcsm_ppi2_outcome"
|
||||
#, leg_title = "mCSM-ppi2"
|
||||
#, label_categories = labels_ppi2
|
||||
, yaxis_title = ""
|
||||
, leg_position = "none"
|
||||
, subtitle_text = "mCSM-ppi2"
|
||||
, geom_ls = geom_ls
|
||||
, bar_fill_values = c("#F8766D", "#00BFC4")
|
||||
, sts = sts
|
||||
, subtitle_colour= subtitle_colour
|
||||
, bp_plot_title = paste(common_bp_title, "interface")
|
||||
)
|
||||
|
||||
# extract common legend
|
||||
common_legend_aff = get_legend(mLigP +
|
||||
guides(color = guide_legend(nrow = 1)) +
|
||||
theme(legend.position = "top"))
|
||||
|
||||
#==========================
|
||||
# output: AFFINITY PLOTS
|
||||
#==========================
|
||||
bp_affinity_CLP = paste0(outdir_images
|
||||
,tolower(gene)
|
||||
,"_bp_affinity_CL.svg" )
|
||||
|
||||
print(paste0("plot filename:", bp_stability_CLP))
|
||||
svg(bp_affinity_CLP, width = 15, height = 6.5)
|
||||
|
||||
cowplot::plot_grid(
|
||||
common_legend,
|
||||
cowplot::plot_grid(mLigP, mmLigP
|
||||
, ppi2P
|
||||
, nrow = 1
|
||||
, ncol = 3
|
||||
#, labels = c("(a)", "(b)", "(c)", "(d)")
|
||||
, labels = "AUTO"
|
||||
, label_size = 25)
|
||||
, ncol = 1
|
||||
, nrow = 2
|
||||
, rel_heights = c(0.4/10,9/10))
|
||||
#, rel_widths = c(1,1,1))
|
||||
|
||||
|
||||
dev.off()
|
||||
|
||||
################################################################
|
||||
#=========================
|
||||
# Conservation outcome
|
||||
# check this var:
|
||||
outcome_cols_conservation
|
||||
#==========================
|
||||
# provean
|
||||
proveanP = stability_count_bp(plotdf = df3
|
||||
, df_colname = "provean_outcome"
|
||||
#, leg_title = "PROVEAN"
|
||||
#, label_categories = labels_provean
|
||||
, yaxis_title = ""
|
||||
, leg_position = "top"
|
||||
, subtitle_text = "PROVEAN"
|
||||
, geom_ls = geom_ls
|
||||
, bar_fill_values = c("#F8766D", "#00BFC4")
|
||||
, sts = sts
|
||||
, subtitle_colour= subtitle_colour)
|
||||
|
||||
|
||||
# snap2
|
||||
snap2P = stability_count_bp(plotdf = df3
|
||||
, df_colname = "snap2_outcome"
|
||||
#, leg_title = "SNAP2"
|
||||
#, label_categories = labels_snap2
|
||||
, yaxis_title = "Number of nsSNPs"
|
||||
, leg_position = "top"
|
||||
, subtitle_text = "SNAP2"
|
||||
, geom_ls = geom_ls
|
||||
, bar_fill_values = c("#F8766D", "#00BFC4")
|
||||
, sts = sts
|
||||
, subtitle_colour= subtitle_colour)
|
||||
|
||||
# consurf
|
||||
consurfP = stability_count_bp(plotdf = df3
|
||||
, df_colname = "consurf_outcome"
|
||||
#, leg_title = "ConSurf"
|
||||
#, label_categories = labels_consurf
|
||||
, yaxis_title = ""
|
||||
, leg_position = "top"
|
||||
, subtitle_text = "ConSurf"
|
||||
, geom_ls = 5
|
||||
, bar_fill_values = consurf_colours # from globals
|
||||
, sts = sts
|
||||
, subtitle_colour= subtitle_colour)
|
||||
|
||||
consurfP
|
||||
#============================
|
||||
# output: CONSERVATION PLOTS
|
||||
#============================
|
||||
bp_conservation_CLP = paste0(outdir_images
|
||||
,tolower(gene)
|
||||
,"_bp_conservation_CL.svg" )
|
||||
|
||||
print(paste0("plot filename:", bp_conservation_CLP))
|
||||
svg(bp_conservation_CLP, width = 15, height = 6.5)
|
||||
|
||||
cowplot::plot_grid(proveanP, snap2P, consurfP
|
||||
, nrow = 1
|
||||
, ncol = 3
|
||||
#, labels = c("(a)", "(b)", "(c)", "(d)")
|
||||
, labels = "AUTO"
|
||||
, label_size = 25
|
||||
#, rel_heights = c(0.4/10,9/10))
|
||||
, rel_widths = c(0.9, 0.9, 1.1))
|
||||
|
||||
|
||||
dev.off()
|
||||
|
||||
#####################################################################
|
||||
#===============================================================
|
||||
# ------------------------------
|
||||
# bp site site count: ALL
|
||||
# <10 Ang ligand
|
||||
# ------------------------------
|
||||
posC_all = site_snp_count_bp(plotdf = df3
|
||||
, df_colname = "position"
|
||||
, xaxis_title = ""
|
||||
, yaxis_title = "Number of Sites"
|
||||
, subtitle_size = 20)
|
||||
|
||||
|
||||
# ------------------------------
|
||||
# bp site site count: mCSM-lig
|
||||
# < 10 Ang ligand
|
||||
# ------------------------------
|
||||
common_bp_title = paste0("Sites <", DistCutOff, angstroms_symbol)
|
||||
|
||||
posC_lig = site_snp_count_bp(plotdf = df3_lig
|
||||
, df_colname = "position"
|
||||
, xaxis_title = "Number of nsSNPs"
|
||||
, yaxis_title = "" #+ annotate("text", x = 1.5, y = 2.2, label = "Text No. 1")
|
||||
|
||||
, subtitle_text = paste0(common_bp_title, " ligand")
|
||||
, subtitle_size = 20
|
||||
, subtitle_colour = subtitle_colour)
|
||||
# ------------------------------
|
||||
# bp site site count: ppi2
|
||||
# < 10 Ang interface
|
||||
# ------------------------------
|
||||
|
||||
posC_ppi2 = site_snp_count_bp(plotdf = df3_ppi2
|
||||
, df_colname = "position"
|
||||
, xaxis_title = ""
|
||||
, yaxis_title = ""
|
||||
, subtitle_text = paste0(common_bp_title, " interface")
|
||||
, subtitle_size = 20
|
||||
, subtitle_colour = subtitle_colour)
|
||||
|
||||
# ------------------------------
|
||||
#FIXME: bp site site count: na
|
||||
# < 10 Ang TBC
|
||||
# ------------------------------
|
||||
# posC_na = site_snp_count_bp(plotdf = df3_na
|
||||
# , df_colname = "position"
|
||||
# , xaxis_title = ""
|
||||
# , yaxis_title = "")
|
||||
|
||||
|
||||
#===========================
|
||||
# output: SITE SNP count:
|
||||
# all + affinity
|
||||
#==========================
|
||||
pos_count_combined_CLP = paste0(outdir_images
|
||||
,tolower(gene)
|
||||
,"_pos_count_PS_AFF.svg")
|
||||
|
||||
|
||||
svg(pos_count_combined_CLP, width = 15, height = 6.5)
|
||||
print(paste0("plot filename:", pos_count_combined_CLP))
|
||||
|
||||
cowplot::plot_grid(posC_all, posC_lig, posC_ppi2
|
||||
#, posC_na
|
||||
, nrow = 1
|
||||
, ncol = 3
|
||||
#, labels = c("(a)", "(b)", "(c)", "(d)")
|
||||
, labels = "AUTO"
|
||||
, label_size = 25)
|
||||
|
||||
dev.off()
|
||||
#===============================================================
|
330
scripts/plotting/plotting_thesis/corr/corr_adjusted_PS_LIG.R
Normal file
330
scripts/plotting/plotting_thesis/corr/corr_adjusted_PS_LIG.R
Normal file
|
@ -0,0 +1,330 @@
|
|||
#!/usr/bin/env Rscript
|
||||
#########################################################
|
||||
# TASK: Corr plots for PS and Lig
|
||||
|
||||
# Output: 1 svg
|
||||
|
||||
#=======================================================================
|
||||
# working dir and loading libraries
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting/")
|
||||
getwd()
|
||||
|
||||
|
||||
source("~/git/LSHTM_analysis/scripts/Header_TT.R")
|
||||
require(cowplot)
|
||||
source("combining_dfs_plotting.R")
|
||||
source("my_pairs_panel.R")
|
||||
# should return the following dfs, directories and variables
|
||||
|
||||
# PS combined:
|
||||
# 1) merged_df2
|
||||
# 2) merged_df2_comp
|
||||
# 3) merged_df3
|
||||
# 4) merged_df3_comp
|
||||
|
||||
# LIG combined:
|
||||
# 5) merged_df2_lig
|
||||
# 6) merged_df2_comp_lig
|
||||
# 7) merged_df3_lig
|
||||
# 8) merged_df3_comp_lig
|
||||
|
||||
# 9) my_df_u
|
||||
# 10) my_df_u_lig
|
||||
|
||||
cat(paste0("Directories imported:"
|
||||
, "\ndatadir:", datadir
|
||||
, "\nindir:", indir
|
||||
, "\noutdir:", outdir
|
||||
, "\nplotdir:", plotdir))
|
||||
|
||||
cat(paste0("Variables imported:"
|
||||
, "\ndrug:", drug
|
||||
, "\ngene:", gene
|
||||
, "\ngene_match:", gene_match
|
||||
, "\nAngstrom symbol:", angstroms_symbol
|
||||
, "\nNo. of duplicated muts:", dup_muts_nu
|
||||
, "\nNA count for ORs:", na_count
|
||||
, "\nNA count in df2:", na_count_df2
|
||||
, "\nNA count in df3:", na_count_df3))
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
# can't combine by cowplot because not ggplots
|
||||
#corr_plot_combined = "corr_combined.svg"
|
||||
#plot_corr_plot_combined = paste0(plotdir,"/", corr_plot_combined)
|
||||
|
||||
# PS
|
||||
corr_ps_adjusted = "corr_PS_adjusted.svg"
|
||||
plot_corr_ps_adjusted = paste0(plotdir,"/", corr_ps)
|
||||
|
||||
# LIG
|
||||
corr_lig_adjusted = "corr_LIG_adjusted.svg"
|
||||
plot_corr_lig_adjusted = paste0(plotdir,"/", corr_lig)
|
||||
|
||||
####################################################################
|
||||
# end of loading libraries and functions #
|
||||
########################################################################
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
df_ps = merged_df3_comp
|
||||
df_lig = merged_df3_comp_lig
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
rm( merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig, my_df_u, my_df_u_lig)
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#===========================
|
||||
# Data for Correlation plots:PS
|
||||
#===========================
|
||||
table(df_ps$duet_outcome)
|
||||
|
||||
|
||||
#===========================
|
||||
# Data for Correlation plots:foldx
|
||||
#===========================
|
||||
#============================
|
||||
# adding foldx scaled values
|
||||
# scale data b/w -1 and 1
|
||||
#============================
|
||||
n = which(colnames(df_ps) == "ddg"); n
|
||||
|
||||
my_min = min(df_ps[,n]); my_min
|
||||
my_max = max(df_ps[,n]); my_max
|
||||
|
||||
df_ps$foldx_scaled = ifelse(df_ps[,n] < 0
|
||||
, df_ps[,n]/abs(my_min)
|
||||
, df_ps[,n]/my_max)
|
||||
# sanity check
|
||||
my_min = min(df_ps$foldx_scaled); my_min
|
||||
my_max = max(df_ps$foldx_scaled); my_max
|
||||
|
||||
if (my_min == -1 && my_max == 1){
|
||||
cat("PASS: foldx ddg successfully scaled b/w -1 and 1"
|
||||
, "\nProceeding with assigning foldx outcome category")
|
||||
}else{
|
||||
cat("FAIL: could not scale foldx ddg values"
|
||||
, "Aborting!")
|
||||
}
|
||||
|
||||
|
||||
#================================
|
||||
# adding foldx outcome category
|
||||
# ddg<0 = "Stabilising" (-ve)
|
||||
#=================================
|
||||
|
||||
c1 = table(df_ps$ddg < 0)
|
||||
df_ps$foldx_outcome = ifelse(df_ps$ddg < 0, "Stabilising", "Destabilising")
|
||||
c2 = table(df_ps$ddg < 0)
|
||||
|
||||
if ( all(c1 == c2) ){
|
||||
cat("PASS: foldx outcome successfully created")
|
||||
}else{
|
||||
cat("FAIL: foldx outcome could not be created. Aborting!")
|
||||
exit()
|
||||
}
|
||||
|
||||
table(df_ps$foldx_outcome)
|
||||
|
||||
|
||||
#======================
|
||||
# adding log cols
|
||||
#======================
|
||||
|
||||
df_ps$log10_or_mychisq = log10(df_ps$or_mychisq)
|
||||
df_ps$neglog_pval_fisher = -log10(df_ps$pval_fisher)
|
||||
|
||||
df_ps$log10_or_kin = log10(df_ps$or_kin)
|
||||
df_ps$neglog_pwald_kin = -log10(df_ps$pwald_kin)
|
||||
|
||||
# subset data to generate pairwise correlations
|
||||
cols_to_select = c("duet_scaled"
|
||||
|
||||
, "foldx_scaled"
|
||||
|
||||
#, "log10_or_mychisq"
|
||||
#, "neglog_pval_fisher"
|
||||
|
||||
, "or_kin"
|
||||
, "neglog_pwald_kin"
|
||||
|
||||
, "af"
|
||||
|
||||
, "asa"
|
||||
, "rsa"
|
||||
, "kd_values"
|
||||
, "rd_values"
|
||||
|
||||
, "duet_outcome"
|
||||
, drug)
|
||||
|
||||
corr_data_ps = df_ps[, cols_to_select]
|
||||
|
||||
dim(corr_data_ps)
|
||||
|
||||
#p_italic = substitute(paste("-Log(", italic('P'), ")"));p_italic
|
||||
#p_adjusted_italic = substitute(paste("-Log(", italic('P adjusted'), ")"));p_adjusted_italic
|
||||
|
||||
# assign nice colnames (for display)
|
||||
my_corr_colnames = c("DUET"
|
||||
|
||||
, "Foldx"
|
||||
#, "Log(OR)"
|
||||
#, "-Log(P)"
|
||||
|
||||
, "OR adjusted"
|
||||
, "-Log(P wald)"
|
||||
|
||||
, "AF"
|
||||
|
||||
, "ASA"
|
||||
, "RSA"
|
||||
, "KD"
|
||||
, "RD"
|
||||
|
||||
, "duet_outcome"
|
||||
, drug)
|
||||
|
||||
length(my_corr_colnames)
|
||||
|
||||
colnames(corr_data_ps)
|
||||
colnames(corr_data_ps) <- my_corr_colnames
|
||||
colnames(corr_data_ps)
|
||||
|
||||
#-----------------
|
||||
# generate corr PS plot
|
||||
#-----------------
|
||||
start = 1
|
||||
end = which(colnames(corr_data_ps) == drug); end # should be the last column
|
||||
offset = 1
|
||||
|
||||
my_corr_ps = corr_data_ps[start:(end-offset)]
|
||||
head(my_corr_ps)
|
||||
|
||||
#my_cols = c("#f8766d", "#00bfc4")
|
||||
# deep blue :#007d85
|
||||
# deep red: #ae301e
|
||||
|
||||
cat("Corr plot PS:", plot_corr_ps_adjusted)
|
||||
svg(plot_corr_ps_adjusted, width = 15, height = 15)
|
||||
|
||||
OutPlot1 = pairs.panels(my_corr_ps[1:(length(my_corr_ps)-1)]
|
||||
, method = "spearman" # correlation method
|
||||
, hist.col = "grey" ##00AFBB
|
||||
, density = TRUE # show density plots
|
||||
, ellipses = F # show correlation ellipses
|
||||
, stars = T
|
||||
, rug = F
|
||||
, breaks = "Sturges"
|
||||
, show.points = T
|
||||
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_ps$duet_outcome))]
|
||||
, pch = 21
|
||||
, jitter = T
|
||||
#, alpha = .05
|
||||
#, points(pch = 19, col = c("#f8766d", "#00bfc4"))
|
||||
, cex = 2
|
||||
, cex.axis = 1.5
|
||||
, cex.labels = 1.5
|
||||
, cex.cor = 1
|
||||
, smooth = F
|
||||
)
|
||||
|
||||
print(OutPlot1)
|
||||
dev.off()
|
||||
|
||||
#===========================
|
||||
# Data for Correlation plots: LIG
|
||||
#===========================
|
||||
table(df_lig$ligand_outcome)
|
||||
|
||||
df_lig$log10_or_mychisq = log10(df_lig$or_mychisq)
|
||||
df_lig$neglog_pval_fisher = -log10(df_lig$pval_fisher)
|
||||
|
||||
|
||||
df_lig$log10_or_kin = log10(df_lig$or_kin)
|
||||
df_lig$neglog_pwald_kin = -log10(df_lig$pwald_kin)
|
||||
|
||||
|
||||
# subset data to generate pairwise correlations
|
||||
cols_to_select = c("affinity_scaled"
|
||||
|
||||
, "log10_or_mychisq"
|
||||
, "neglog_pval_fisher"
|
||||
|
||||
#, "or_kin"
|
||||
#, "neglog_pwald_kin"
|
||||
|
||||
, "af"
|
||||
|
||||
, "ligand_outcome"
|
||||
, drug)
|
||||
|
||||
corr_data_lig = df_lig[, cols_to_select]
|
||||
|
||||
|
||||
dim(corr_data_lig)
|
||||
|
||||
# assign nice colnames (for display)
|
||||
my_corr_colnames = c("Ligand Affinity"
|
||||
|
||||
, "Log(OR)"
|
||||
, "-Log(P)"
|
||||
|
||||
#, "OR adjusted"
|
||||
#, "-Log(P wald)"
|
||||
|
||||
, "AF"
|
||||
|
||||
, "ligand_outcome"
|
||||
, drug)
|
||||
|
||||
length(my_corr_colnames)
|
||||
|
||||
colnames(corr_data_lig)
|
||||
colnames(corr_data_lig) <- my_corr_colnames
|
||||
colnames(corr_data_lig)
|
||||
|
||||
#-----------------
|
||||
# generate corr LIG plot
|
||||
#-----------------
|
||||
|
||||
start = 1
|
||||
end = which(colnames(corr_data_lig) == drug); end # should be the last column
|
||||
offset = 1
|
||||
|
||||
my_corr_lig = corr_data_lig[start:(end-offset)]
|
||||
head(my_corr_lig)
|
||||
|
||||
cat("Corr LIG plot:", plot_corr_lig_adjusted)
|
||||
svg(plot_corr_lig_adjusted, width = 15, height = 15)
|
||||
|
||||
OutPlot2 = pairs.panels(my_corr_lig[1:(length(my_corr_lig)-1)]
|
||||
, method = "spearman" # correlation method
|
||||
, hist.col = "grey" ##00AFBB
|
||||
, density = TRUE # show density plots
|
||||
, ellipses = F # show correlation ellipses
|
||||
, stars = T
|
||||
, rug = F
|
||||
, breaks = "Sturges"
|
||||
, show.points = T
|
||||
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_lig$ligand_outcome))]
|
||||
, pch = 21
|
||||
, jitter = T
|
||||
#, alpha = .05
|
||||
#, points(pch = 19, col = c("#f8766d", "#00bfc4"))
|
||||
, cex = 3
|
||||
, cex.axis = 2.5
|
||||
, cex.labels = 2.1
|
||||
, cex.cor = 1
|
||||
, smooth = F
|
||||
)
|
||||
|
||||
print(OutPlot2)
|
||||
dev.off()
|
||||
#######################################################
|
||||
|
||||
|
242
scripts/plotting/plotting_thesis/corr/corr_plots.R
Executable file
242
scripts/plotting/plotting_thesis/corr/corr_plots.R
Executable file
|
@ -0,0 +1,242 @@
|
|||
#!/usr/bin/env Rscript
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||
getwd()
|
||||
source("~/git/LSHTM_analysis/scripts/Header_TT.R")
|
||||
|
||||
spec = matrix(c(
|
||||
"drug" , "d", 1, "character",
|
||||
"gene" , "g", 1, "character",
|
||||
"data_file1" , "fa", 2, "character",
|
||||
"data_file2" , "fb", 2, "character"
|
||||
), byrow = TRUE, ncol = 4)
|
||||
|
||||
opt = getopt(spec)
|
||||
|
||||
drug = opt$drug
|
||||
gene = opt$gene
|
||||
infile_params = opt$data_file1
|
||||
infile_metadata = opt$data_file2
|
||||
|
||||
if(is.null(drug)|is.null(gene)) {
|
||||
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
|
||||
}
|
||||
|
||||
#===========
|
||||
# Input
|
||||
#===========
|
||||
|
||||
source("get_plotting_dfs.R")
|
||||
|
||||
#===========
|
||||
# output
|
||||
#===========
|
||||
# PS
|
||||
corr_ps = "corr_PS.svg"
|
||||
plot_corr_ps = paste0(plotdir,"/", corr_ps)
|
||||
|
||||
corr_ps_all = "corr_PS_all.svg"
|
||||
plot_corr_ps_all = paste0(plotdir,"/", corr_ps_all)
|
||||
|
||||
|
||||
# LIG
|
||||
corr_lig = "corr_LIG.svg"
|
||||
plot_corr_lig = paste0(plotdir,"/", corr_lig)
|
||||
|
||||
corr_lig_all = "corr_LIG_all.svg"
|
||||
plot_corr_lig_all = paste0(plotdir,"/", corr_lig_all)
|
||||
|
||||
##############################################################################
|
||||
foo = corr_ps_df3
|
||||
#foo2 = corr_ps_df2
|
||||
|
||||
bar = corr_lig_df3
|
||||
#bar2 = corr_lig_df2
|
||||
|
||||
#================================
|
||||
# Data for Correlation plots: PS
|
||||
#================================
|
||||
# subset data to generate pairwise correlations
|
||||
cols_to_select = c("DUET"
|
||||
, "Foldx"
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
, "MAF"
|
||||
, "duet_outcome"
|
||||
, drug)
|
||||
corr_data_ps = foo[names(foo)%in%cols_to_select]
|
||||
length(cols_to_select)
|
||||
|
||||
colnames(corr_data_ps)
|
||||
|
||||
start = 1
|
||||
end = which(colnames(corr_data_ps) == drug); end # should be the last column
|
||||
offset = 1
|
||||
|
||||
my_corr_ps = corr_data_ps[start:(end - offset)]
|
||||
head(my_corr_ps)
|
||||
|
||||
#---------------------
|
||||
# Corr plot PS: short
|
||||
# data: corr_ps_df3
|
||||
# cols: 7
|
||||
#---------------------
|
||||
cat("Corr plot PS DUET with coloured dots:", plot_corr_ps)
|
||||
svg(plot_corr_ps, width = 15, height = 15)
|
||||
|
||||
pairs.panels(my_corr_ps[1:(length(my_corr_ps)-1)]
|
||||
, method = "spearman" # correlation method
|
||||
, hist.col = "grey" ##00AFBB
|
||||
, density = TRUE # show density plots
|
||||
, ellipses = F # show correlation ellipses
|
||||
, stars = T
|
||||
, rug = F
|
||||
, breaks = "Sturges"
|
||||
, show.points = T
|
||||
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_ps$duet_outcome))] # foldx colours are reveresed
|
||||
, pch = 21 # for bg
|
||||
, jitter = T
|
||||
, alpha = 1
|
||||
, cex = 1.8
|
||||
, cex.axis = 2
|
||||
, cex.labels = 4
|
||||
, cex.cor = 1
|
||||
, smooth = F
|
||||
)
|
||||
dev.off()
|
||||
|
||||
corr_ps_rho = corr.test(my_corr_ps[1:5], method = "spearman")$r
|
||||
corr_ps_p = corr.test(my_corr_ps[1:5], method = "spearman")$p
|
||||
|
||||
#---------------------
|
||||
# Corr plot PS: ALL
|
||||
# data: corr_ps_df3
|
||||
# cols: 10
|
||||
#---------------------
|
||||
end_ps_all = which(colnames(foo) == drug); end_ps_all # should be the last column
|
||||
|
||||
my_corr_ps_all = foo[start:(end_ps_all - offset)]
|
||||
cols_to_drop = "Mutation"
|
||||
my_corr_ps_all = my_corr_ps_all[, !(names(my_corr_ps_all)%in%cols_to_drop)]
|
||||
head(my_corr_ps_all)
|
||||
length(colnames(my_corr_ps_all))
|
||||
|
||||
cat("Corr plot PS DUET with coloured dots:", plot_corr_ps_all)
|
||||
svg(plot_corr_ps_all, width = 15, height = 15)
|
||||
|
||||
pairs.panels(my_corr_ps_all[1:(length(my_corr_ps_all)-1)]
|
||||
, method = "spearman" # correlation method
|
||||
, hist.col = "grey" ##00AFBB
|
||||
, density = TRUE # show density plots
|
||||
, ellipses = F # show correlation ellipses
|
||||
, stars = T
|
||||
, rug = F
|
||||
, breaks = "Sturges"
|
||||
, show.points = T
|
||||
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_ps_all$duet_outcome))] # foldx colours are reveresed
|
||||
, pch = 21 # for bg
|
||||
, jitter = T
|
||||
, alpha = 1
|
||||
, cex = 1.5
|
||||
, cex.axis = 2
|
||||
, cex.labels = 2.5
|
||||
, cex.cor = 1
|
||||
, smooth = F
|
||||
)
|
||||
dev.off()
|
||||
|
||||
#==================================
|
||||
# Data for Correlation plots: LIG
|
||||
#==================================
|
||||
cols_to_select_lig = c("Ligand Affinity"
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
, "MAF"
|
||||
, "ligand_outcome"
|
||||
, drug)
|
||||
|
||||
corr_data_lig = bar[names(bar)%in%cols_to_select_lig]
|
||||
length(cols_to_select_lig)
|
||||
|
||||
colnames(corr_data_lig)
|
||||
|
||||
start_lig = 1
|
||||
end_lig = which(colnames(corr_data_lig) == drug); end_lig # should be the last column
|
||||
offset_lig = 1
|
||||
|
||||
my_corr_lig = corr_data_lig[start_lig:(end_lig-offset_lig)]
|
||||
head(my_corr_lig)
|
||||
|
||||
#---------------------
|
||||
# Corr plot LIG: short
|
||||
# data: corr_lig_df3
|
||||
# cols: 7
|
||||
#---------------------
|
||||
cat("Corr LIG plot with coloured dots:", plot_corr_lig)
|
||||
svg(plot_corr_lig, width = 15, height = 15)
|
||||
|
||||
pairs.panels(my_corr_lig[1:(length(my_corr_lig)-1)]
|
||||
, method = "spearman" # correlation method
|
||||
, hist.col = "grey" ##00AFBB
|
||||
, density = TRUE # show density plots
|
||||
, ellipses = F # show correlation ellipses
|
||||
, stars = T
|
||||
, rug = F
|
||||
, breaks = "Sturges"
|
||||
, show.points = T
|
||||
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_lig$ligand_outcome))]
|
||||
, pch = 21 # for bg
|
||||
, jitter = T
|
||||
, cex = 2
|
||||
, cex.axis = 2
|
||||
, cex.labels = 4
|
||||
, cex.cor = 1
|
||||
, smooth = F
|
||||
)
|
||||
|
||||
dev.off()
|
||||
|
||||
corr_lig_rho = corr.test(my_corr_lig[1:4], method = "spearman")$r
|
||||
corr_lig_p = corr.test(my_corr_lig[1:4], method = "spearman")$p
|
||||
|
||||
#---------------------
|
||||
# Corr plot LIG: ALL
|
||||
# data: corr_lig_df3
|
||||
# cols: 9
|
||||
#---------------------
|
||||
end_lig_all = which(colnames(bar) == drug); end_lig_all # should be the last column
|
||||
|
||||
my_corr_lig_all = bar[start_lig:(end_lig_all - offset_lig)]
|
||||
cols_to_drop = "Mutation"
|
||||
my_corr_lig_all = my_corr_lig_all[, !(names(my_corr_lig_all)%in%cols_to_drop)]
|
||||
head(my_corr_lig_all)
|
||||
length(colnames(my_corr_lig_all))
|
||||
|
||||
cat("Corr plot LIG with coloured dots:", plot_corr_lig_all)
|
||||
svg(plot_corr_lig_all, width = 15, height = 15)
|
||||
|
||||
pairs.panels(my_corr_lig_all[1:(length(my_corr_lig_all)-1)]
|
||||
, method = "spearman" # correlation method
|
||||
, hist.col = "grey" ##00AFBB
|
||||
, density = TRUE # show density plots
|
||||
, ellipses = F # show correlation ellipses
|
||||
, stars = T
|
||||
, rug = F
|
||||
, breaks = "Sturges"
|
||||
, show.points = T
|
||||
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_lig_all$ligand_outcome))] # foldx colours are reveresed
|
||||
, pch = 21 # for bg
|
||||
, jitter = T
|
||||
, alpha = 1
|
||||
, cex = 1.5
|
||||
, cex.axis = 2
|
||||
, cex.labels = 2.2
|
||||
, cex.cor = 1
|
||||
, smooth = F
|
||||
)
|
||||
dev.off()
|
||||
|
||||
|
||||
######################################################################=
|
||||
# End of script
|
||||
######################################################################=
|
276
scripts/plotting/plotting_thesis/corr/corr_plots_gc_i.R
Normal file
276
scripts/plotting/plotting_thesis/corr/corr_plots_gc_i.R
Normal file
|
@ -0,0 +1,276 @@
|
|||
#!/usr/bin/env Rscript
|
||||
source("~/git/LSHTM_analysis/config/gid.R")
|
||||
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
|
||||
|
||||
#===================================================================
|
||||
corr_data = corr_data_extract(merged_df3, drug_name = drug)
|
||||
#corr_data = corr_data_extract(merged_df2, drug_name = drug)
|
||||
|
||||
geneL_normal = c("pnca")
|
||||
geneL_na_dy = c("gid")
|
||||
geneL_na = c("rpob")
|
||||
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
|
||||
|
||||
core_cols <- c( "Log (OR)" , "MAF", "-Log (P)"
|
||||
, "DUET", "FoldX"
|
||||
, "DeepDDG", "Dynamut2"
|
||||
, "ASA", "RSA", "RD", "KD"
|
||||
, "Consurf", "SNAP2"
|
||||
#, "mutation_info_labels"
|
||||
)
|
||||
|
||||
|
||||
if (tolower(gene)%in%geneL_normal){
|
||||
corrplot_cols = core_cols
|
||||
}
|
||||
|
||||
if (tolower(gene)%in%geneL_na_dy){
|
||||
additional_cols = c("mCSM-NA"
|
||||
, "Dynamut"
|
||||
, "ENCoM-DDG"
|
||||
, "ENCoM-DDS"
|
||||
, "mCSM"
|
||||
, "SDM"
|
||||
, "DUET-d"
|
||||
, "mutation_info_labels")
|
||||
corrplot_cols = c(core_cols, additional_cols)
|
||||
}
|
||||
if (tolower(gene)%in%geneL_na){
|
||||
additional_cols = c("mCSM-NA"
|
||||
, "mutation_info_labels")
|
||||
corrplot_cols = c(core_cols, additional_cols)
|
||||
|
||||
}
|
||||
|
||||
if (tolower(gene)%in%geneL_ppi2){
|
||||
additional_cols = c("mCSM-PPI2"
|
||||
, "mutation_info_labels")
|
||||
corrplot_cols = c(core_cols, additional_cols)
|
||||
}
|
||||
|
||||
#========================================
|
||||
# corrplot_cols <- c( "Log (OR)"
|
||||
# , "MAF"
|
||||
# , "-Log (P)"
|
||||
# , "DUET"
|
||||
# , "FoldX"
|
||||
# , "DeepDDG"
|
||||
# , "Dynamut2"
|
||||
# , "mCSM-NA"
|
||||
# , "Dynamut"
|
||||
# , "ENCoM-DDG"
|
||||
# , "ENCoM-DDS"
|
||||
# , "mCSM"
|
||||
# , "SDM"
|
||||
# , "DUET-d"
|
||||
# , "ASA"
|
||||
# , "RSA"
|
||||
# , "RD"
|
||||
# , "KD"
|
||||
# , "mutation_info_labels"
|
||||
# )
|
||||
|
||||
corr_df <- corr_data[, corrplot_cols] # col order is according to corrplot_cols
|
||||
head(corr_df); names(corr_df)
|
||||
|
||||
if ( all( corrplot_cols%in%names(corr_df) ) ){
|
||||
cat("\nPASS: Successfully selected"
|
||||
, length(corrplot_cols)
|
||||
, "columns for building correlation df")
|
||||
} else {
|
||||
cat("\nFAIl: Something went wrong, numbers mismatch"
|
||||
, "\nExpected cols:", length(corrplot_cols)
|
||||
, "\nGot:", length(corr_df) )
|
||||
}
|
||||
|
||||
#=====================================================
|
||||
corrplot_df <- corr_df
|
||||
|
||||
# stat_df = corrplot_df[, c("Log (OR)"
|
||||
# , "MAF"
|
||||
# , "-Log (P)")]
|
||||
|
||||
plot_title <- "Correlation plots (stability)"
|
||||
|
||||
# Checkbox Names
|
||||
# FIXME: select columns conditionally based on gene and grey out the ones that are not present!
|
||||
|
||||
cBCorrNames = c( "Odds Ratio"
|
||||
, "Allele Frequency"
|
||||
, "P-value"
|
||||
, "DUET"
|
||||
, "FoldX"
|
||||
, "DeepDDG"
|
||||
, "Dynamut2"
|
||||
, "ASA"
|
||||
, "RSA"
|
||||
, "RD"
|
||||
, "KD"
|
||||
, "Consurf"
|
||||
, "SNAP2"
|
||||
, "Nucleic Acid affinity"
|
||||
, "PPi2 affinity"
|
||||
|
||||
#, "Dynamut"
|
||||
#, "ENCoM-Stability"
|
||||
#, "ENCoM-Flexibility"
|
||||
#, "mCSM"
|
||||
#, "SDM"
|
||||
#, "DUET-d"
|
||||
)
|
||||
|
||||
# Checkbox Values (aka Column Names that are in corrplot_df)
|
||||
cBCorrVals = c("Log (OR)"
|
||||
, "MAF"
|
||||
, "-Log (P)"
|
||||
, "DUET"
|
||||
, "FoldX"
|
||||
, "DeepDDG"
|
||||
, "Dynamut2"
|
||||
, "ASA"
|
||||
, "RSA"
|
||||
, "RD"
|
||||
, "KD"
|
||||
, "Consurf"
|
||||
, "SNAP2"
|
||||
, "mCSM-NA"
|
||||
, "mCSM-PPI2"
|
||||
# , "Dynamut"
|
||||
# , "ENCoM-DDG"
|
||||
# , "ENCoM-DDS"
|
||||
# , "mCSM"
|
||||
# , "SDM"
|
||||
# , "DUET-d"
|
||||
)
|
||||
|
||||
# Pre-selected checkboxes
|
||||
cBCorrSelected = c("Log (OR)"
|
||||
, "MAF"
|
||||
, "-Log (P)")
|
||||
|
||||
#################
|
||||
# Define UI
|
||||
#################
|
||||
u_corr <- fluidPage(
|
||||
|
||||
headerPanel(plot_title),
|
||||
|
||||
sidebarLayout(position = "left"
|
||||
, sidebarPanel(
|
||||
checkboxGroupInput("variable", "Choose parameter:"
|
||||
, choiceNames = cBCorrNames
|
||||
, choiceValues = cBCorrVals
|
||||
, selected = cBCorrSelected
|
||||
)
|
||||
|
||||
# could be a fluid Row
|
||||
, actionButton("add_col" , "Render")
|
||||
, actionButton("reset_graph" , "Reset Graphs")
|
||||
, actionButton("select_all" , "Select All")
|
||||
|
||||
)
|
||||
|
||||
# output/display
|
||||
, mainPanel(plotOutput(outputId = 'corrplot'
|
||||
, height = "1200px"
|
||||
, width = "1500px")
|
||||
# , height = "800px"
|
||||
# , width = "600px")
|
||||
, textOutput("txt")
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
#################
|
||||
# Define server
|
||||
#################
|
||||
s_corr <- shinyServer(function(input, output, session)
|
||||
|
||||
{
|
||||
|
||||
#================
|
||||
# Initial render
|
||||
#================
|
||||
output$corrplot <- renderPlot({
|
||||
|
||||
#---------------------
|
||||
# My correlation plot: initial plot
|
||||
#---------------------
|
||||
c_plot <- my_corr_pairs(corr_data_all = corrplot_df
|
||||
, corr_cols = cBCorrSelected
|
||||
, corr_method = "spearman"
|
||||
, dot_size = 2
|
||||
, ats = 1.5
|
||||
, corr_lab_size = length(cBCorrNames)/length(cBCorrSelected) * 1.3
|
||||
, corr_value_size = 1)
|
||||
})
|
||||
|
||||
#====================
|
||||
# Interactive render
|
||||
#====================
|
||||
observeEvent(
|
||||
input$add_col, {
|
||||
|
||||
# select cols for corrplot
|
||||
corr_cols_s <- c(input$variable)
|
||||
|
||||
# render plot
|
||||
if (length(c(input$variable)) >= 2) {
|
||||
output$corrplot <- renderPlot({
|
||||
|
||||
#---------------------
|
||||
# My correlation plot: user selects columns
|
||||
#---------------------
|
||||
c_plot <- my_corr_pairs(corr_data_all = corrplot_df
|
||||
, corr_cols = corr_cols_s
|
||||
, dot_size = 2
|
||||
, ats = 1.5
|
||||
, corr_lab_size = length(cBCorrNames)/length(corr_cols_s) * 1.3
|
||||
, corr_value_size = 1)
|
||||
|
||||
})
|
||||
} else{ output$txt = renderText({"Argh, common! It's a correlation plot. Select >=2 vars!"})
|
||||
|
||||
}
|
||||
|
||||
})
|
||||
|
||||
#==================================
|
||||
# Add button: Select All checkbox
|
||||
#==================================
|
||||
observeEvent(
|
||||
input$select_all,{
|
||||
|
||||
updateCheckboxGroupInput(session, "variable", selected = cBCorrVals)
|
||||
}
|
||||
)
|
||||
|
||||
#================
|
||||
# Reset render
|
||||
#================
|
||||
observeEvent(
|
||||
input$reset_graph,{
|
||||
|
||||
# reset checkboxes to default selection
|
||||
updateCheckboxGroupInput(session, "variable", selected = cBCorrSelected)
|
||||
|
||||
|
||||
# render plot
|
||||
output$corrplot <- renderPlot({
|
||||
|
||||
#---------------------
|
||||
# My correlation plot: reset plot
|
||||
#---------------------
|
||||
c_plot <- my_corr_pairs(corr_data_all = corrplot_df
|
||||
, corr_cols = cBCorrSelected
|
||||
, dot_size = 1.2
|
||||
, ats = 1.5
|
||||
, corr_lab_size = length(cBCorrNames)/length(cBCorrSelected) * 1.3
|
||||
, corr_value_size = 1)
|
||||
})
|
||||
}
|
||||
)
|
||||
}
|
||||
)
|
||||
|
||||
shinyApp(ui = u_corr, server = s_corr)
|
220
scripts/plotting/plotting_thesis/corr/corr_plots_gc_lig_i.R
Normal file
220
scripts/plotting/plotting_thesis/corr/corr_plots_gc_lig_i.R
Normal file
|
@ -0,0 +1,220 @@
|
|||
#!/usr/bin/env Rscript
|
||||
|
||||
source("~/git/LSHTM_analysis/config/gid.R")
|
||||
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
|
||||
|
||||
#===================================================================
|
||||
corr_data = corr_data_extract(merged_df3, drug_name = drug)
|
||||
#corr_data = corr_data_extract(merged_df2, drug_name = drug)
|
||||
#================================================================
|
||||
#other globals
|
||||
dist_colname <- LigDist_colname # ligand_distance (from globals)
|
||||
dist_cutoff <- LigDist_cutoff # 10 (from globals)
|
||||
|
||||
cat("\nLigand distance cut off, colname:", dist_colname
|
||||
, "\nThe max distance", gene, "structure df" , ":", max_ang, "\u212b"
|
||||
, "\nThe min distance", gene, "structure df" , ":", min_ang, "\u212b")
|
||||
|
||||
########################################################################
|
||||
|
||||
#==========================================
|
||||
#####################
|
||||
# Correlation plot
|
||||
#####################
|
||||
colnames(corr_df_m3_f)
|
||||
|
||||
corrplot_cols_lig <- c( "Log (OR)"
|
||||
, "MAF"
|
||||
, "-Log (P)"
|
||||
, "mCSM-lig"
|
||||
, "mCSM-NA"
|
||||
, "ASA"
|
||||
, "RSA"
|
||||
, "RD"
|
||||
, "KD"
|
||||
, dist_colname
|
||||
, "mutation_info_labels"
|
||||
)
|
||||
|
||||
corr_df_lig <- corr_df_m3_f[, corrplot_cols_lig]
|
||||
head(corr_df_lig)
|
||||
|
||||
corrplot_df_lig <- corr_df_lig
|
||||
|
||||
# static df
|
||||
# stat_df = corrplot_df_lig[, c("Log (OR)"
|
||||
# , "MAF"
|
||||
# , "-Log (P)"
|
||||
# )]
|
||||
|
||||
plot_title_lig <- "Correlation plots (ligand affinity)"
|
||||
|
||||
# Checkbox Names
|
||||
cCorrNames = c( "Odds Ratio"
|
||||
, "Allele Frequency"
|
||||
, "P-value"
|
||||
, "Ligand affinity"
|
||||
, "Nucleic Acid affinity"
|
||||
, "ASA"
|
||||
, "RSA"
|
||||
, "RD"
|
||||
, "KD"
|
||||
, "Ligand Distance")
|
||||
|
||||
# Checkbox Values (aka Column Names that are in corrplot_df_lig)
|
||||
cCorrVals = c("Log (OR)"
|
||||
, "MAF"
|
||||
, "-Log (P)"
|
||||
, "mCSM-lig"
|
||||
, "mCSM-NA"
|
||||
, "ASA"
|
||||
, "RSA"
|
||||
, "RD"
|
||||
, "KD"
|
||||
, dist_colname)
|
||||
|
||||
# Pre-selected checkboxes
|
||||
cCorrSelected = c("Log (OR)"
|
||||
, "MAF"
|
||||
, "-Log (P)")
|
||||
#============
|
||||
# Define UI
|
||||
#============
|
||||
u_corr_lig<- fluidPage(
|
||||
headerPanel(plot_title_lig),
|
||||
sidebarLayout(position = "left"
|
||||
, sidebarPanel("Correlations: Filtered data data"
|
||||
, numericInput(inputId = "lig_dist"
|
||||
, label = "Ligand distance cutoff"
|
||||
, value = dist_cutoff # 10 default from globals
|
||||
, min = min_ang
|
||||
, max = max_ang)
|
||||
, checkboxGroupInput("variable", "Choose parameter:"
|
||||
, choiceNames = cCorrNames
|
||||
, choiceValues = cCorrVals
|
||||
, selected = cCorrSelected
|
||||
)
|
||||
# could be a fluid Row
|
||||
, actionButton("add_col" , "Render")
|
||||
, actionButton("reset_graph" , "Reset Graphs")
|
||||
, actionButton("select_all" , "Select All")
|
||||
|
||||
)
|
||||
|
||||
# output/display
|
||||
, mainPanel(plotOutput(outputId = 'corrplot'
|
||||
, height = "1000px"
|
||||
, width = "1200px")
|
||||
# , height = "800px"
|
||||
# , width = "600px")
|
||||
, textOutput("txt")
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
#===============
|
||||
# Define server
|
||||
#===============
|
||||
s_corr_lig <- shinyServer(function(input, output, session)
|
||||
|
||||
{
|
||||
|
||||
#================
|
||||
# Initial render
|
||||
#================
|
||||
output$corrplot <- renderPlot({
|
||||
|
||||
# get the user-specified lig_list
|
||||
dist_cutoff_ini = input$lig_dist
|
||||
|
||||
# subset data for plot
|
||||
corrplot_df_lig_ini = corrplot_df_lig[corrplot_df_lig[[dist_colname]] < dist_cutoff_ini,]
|
||||
|
||||
#---------------------
|
||||
# My correlation plot: initial plot
|
||||
#---------------------
|
||||
c_plot <- my_corr_pairs(
|
||||
#corr_data_all = corrplot_df_lig
|
||||
corr_data_all = corrplot_df_lig_ini
|
||||
, corr_cols = cCorrSelected
|
||||
, dot_size = 2
|
||||
, ats = 1.5
|
||||
, corr_lab_size = length(cCorrNames)/length(cCorrSelected) * 1.3
|
||||
, corr_value_size = 1)
|
||||
|
||||
})
|
||||
|
||||
#====================
|
||||
# Interactive render
|
||||
#====================
|
||||
observeEvent(
|
||||
input$add_col, {
|
||||
|
||||
# get the user-specified lig_list
|
||||
dist_cutoff_user = input$lig_dist
|
||||
|
||||
# subset data for plot
|
||||
corrplot_df_lig_s = corrplot_df_lig[corrplot_df_lig[[dist_colname]] < dist_cutoff_user,]
|
||||
|
||||
# select cols for corrplot
|
||||
corr_cols_s = c(input$variable)
|
||||
|
||||
# render plot
|
||||
if (length(c(input$variable)) >= 2) {
|
||||
|
||||
output$corrplot <- renderPlot({
|
||||
|
||||
#---------------------
|
||||
# My correlation plot: user selects columns
|
||||
#---------------------
|
||||
c_plot <- my_corr_pairs(corr_data_all = corrplot_df_lig_s
|
||||
, corr_cols = corr_cols_s
|
||||
, dot_size = 1.6
|
||||
, ats = 1.5
|
||||
, corr_lab_size = length(cCorrNames)/length(corr_cols_s) * 1.3
|
||||
, corr_value_size = 1)
|
||||
})
|
||||
} else { output$txt = renderText({"Fuddu! It's a correlation plot. Select >=2 vars bewakoof!"})}
|
||||
|
||||
})
|
||||
|
||||
#==================================
|
||||
# Add button: Select All checkbox
|
||||
#==================================
|
||||
observeEvent(
|
||||
input$select_all,{
|
||||
|
||||
updateCheckboxGroupInput(session, "variable", selected = cCorrVals)
|
||||
}
|
||||
)
|
||||
|
||||
#================
|
||||
# Reset render
|
||||
#================
|
||||
observeEvent(
|
||||
input$reset_graph,{
|
||||
|
||||
# reset checkboxes
|
||||
updateCheckboxGroupInput(session, "variable", selected = cCorrSelected)
|
||||
|
||||
# render plot
|
||||
output$corrplot <- renderPlot({
|
||||
|
||||
#---------------------
|
||||
# My correlation plot: reset plot
|
||||
#---------------------
|
||||
c_plot <- my_corr_pairs(corr_data_all = corrplot_df_lig
|
||||
, corr_cols = cCorrSelected
|
||||
, dot_size = 2
|
||||
, ats = 1.5
|
||||
, corr_lab_size = length(cCorrNames)/length(cCorrSelected) * 1.3
|
||||
, corr_value_size = 1)
|
||||
|
||||
})
|
||||
}
|
||||
)
|
||||
}
|
||||
)
|
||||
|
||||
shinyApp(ui = u_corr_lig, server = s_corr_lig)
|
||||
|
323
scripts/plotting/plotting_thesis/corr/ggcorr_all_PS_LIG.R
Normal file
323
scripts/plotting/plotting_thesis/corr/ggcorr_all_PS_LIG.R
Normal file
|
@ -0,0 +1,323 @@
|
|||
#!/usr/bin/env Rscript
|
||||
#########################################################
|
||||
# TASK: Corr plots for PS and Lig
|
||||
|
||||
# Output: 1 svg
|
||||
|
||||
#=======================================================================
|
||||
# working dir and loading libraries
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting/")
|
||||
getwd()
|
||||
|
||||
source("~/git/LSHTM_analysis/scripts/Header_TT.R")
|
||||
require(cowplot)
|
||||
source("combining_dfs_plotting.R")
|
||||
#source("my_pairs_panel.R")
|
||||
# should return the following dfs, directories and variables
|
||||
|
||||
# FIXME: Can't output from here
|
||||
|
||||
# PS combined:
|
||||
# 1) merged_df2
|
||||
# 2) merged_df2_comp
|
||||
# 3) merged_df3
|
||||
# 4) merged_df3_comp
|
||||
|
||||
# LIG combined:
|
||||
# 5) merged_df2_lig
|
||||
# 6) merged_df2_comp_lig
|
||||
# 7) merged_df3_lig
|
||||
# 8) merged_df3_comp_lig
|
||||
|
||||
# 9) my_df_u
|
||||
# 10) my_df_u_lig
|
||||
|
||||
cat(paste0("Directories imported:"
|
||||
, "\ndatadir:", datadir
|
||||
, "\nindir:", indir
|
||||
, "\noutdir:", outdir
|
||||
, "\nplotdir:", plotdir))
|
||||
|
||||
cat(paste0("Variables imported:"
|
||||
, "\ndrug:", drug
|
||||
, "\ngene:", gene
|
||||
, "\ngene_match:", gene_match
|
||||
, "\nAngstrom symbol:", angstroms_symbol
|
||||
, "\nNo. of duplicated muts:", dup_muts_nu
|
||||
, "\nNA count for ORs:", na_count
|
||||
, "\nNA count in df2:", na_count_df2
|
||||
, "\nNA count in df3:", na_count_df3))
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
# can't combine by cowplot because not ggplots
|
||||
#corr_plot_combined = "corr_combined.svg"
|
||||
#plot_corr_plot_combined = paste0(plotdir,"/", corr_plot_combined)
|
||||
|
||||
# PS
|
||||
#ggcorr_all_ps = "ggcorr_all_PS.svg"
|
||||
ggcorr_all_ps = "ggcorr_all_PS.png"
|
||||
plot_ggcorr_all_ps = paste0(plotdir,"/", ggcorr_all_ps)
|
||||
|
||||
# LIG
|
||||
#ggcorr_all_lig = "ggcorr_all_LIG.svg"
|
||||
ggcorr_all_lig = "ggcorr_all_LIG.png"
|
||||
plot_ggcorr_all_lig = paste0(plotdir,"/", ggcorr_all_lig )
|
||||
|
||||
# combined
|
||||
ggcorr_all_combined_labelled = "ggcorr_all_combined_labelled.png"
|
||||
plot_ggcorr_all_combined_labelled = paste0(plotdir,"/", ggcorr_all_combined_labelled)
|
||||
|
||||
####################################################################
|
||||
# end of loading libraries and functions #
|
||||
########################################################################
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
#df_ps = merged_df3_comp
|
||||
#df_lig = merged_df3_comp_lig
|
||||
merged_df3 = as.data.frame(merged_df3)
|
||||
df_ps = merged_df3
|
||||
df_lig = merged_df3_lig
|
||||
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
rm( merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig, my_df_u, my_df_u_lig)
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
|
||||
#======================
|
||||
# adding log cols
|
||||
#======================
|
||||
# subset data to generate pairwise correlations
|
||||
cols_to_select = c("duet_scaled"
|
||||
|
||||
, "foldx_scaled"
|
||||
|
||||
, "log10_or_mychisq"
|
||||
, "neglog_pval_fisher"
|
||||
|
||||
#, "or_kin"
|
||||
#, "neglog_pwald_kin"
|
||||
|
||||
, "af"
|
||||
|
||||
, "asa"
|
||||
, "rsa"
|
||||
, "kd_values"
|
||||
, "rd_values"
|
||||
|
||||
, "duet_outcome"
|
||||
, drug)
|
||||
|
||||
corr_data_ps = df_ps[, cols_to_select]
|
||||
|
||||
dim(corr_data_ps)
|
||||
|
||||
#p_italic = substitute(paste("-Log(", italic('P'), ")"));p_italic
|
||||
#p_adjusted_italic = substitute(paste("-Log(", italic('P adjusted'), ")"));p_adjusted_italic
|
||||
|
||||
# assign nice colnames (for display)
|
||||
my_corr_colnames = c("DUET"
|
||||
|
||||
, "Foldx"
|
||||
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
|
||||
#, "OR (adjusted)"
|
||||
#, "-Log (P wald)"
|
||||
|
||||
, "AF"
|
||||
|
||||
, "ASA"
|
||||
, "RSA"
|
||||
, "KD"
|
||||
, "RD"
|
||||
|
||||
, "duet_outcome"
|
||||
, drug)
|
||||
|
||||
length(my_corr_colnames)
|
||||
|
||||
colnames(corr_data_ps)
|
||||
colnames(corr_data_ps) <- my_corr_colnames
|
||||
colnames(corr_data_ps)
|
||||
|
||||
#------------------------
|
||||
# Data for ggcorr PS plot
|
||||
#------------------------
|
||||
start = 1
|
||||
end_ggcorr = which(colnames(corr_data_ps) == "duet_outcome"); end_ggcorr # should be the last column
|
||||
offset = 1
|
||||
|
||||
my_ggcorr_ps = corr_data_ps[start:(end_ggcorr-1)]
|
||||
head(my_ggcorr_ps)
|
||||
|
||||
# correlation matrix
|
||||
corr1 <- round(cor(my_ggcorr_ps, method = "spearman", use = "pairwise.complete.obs"), 1)
|
||||
|
||||
# p-value matrix
|
||||
pmat1 <- cor_pmat(my_ggcorr_ps, method = "spearman", use = "pairwise.complete.obs"
|
||||
, conf.level = 0.99)
|
||||
|
||||
corr2 = psych::corr.test(my_ggcorr_ps
|
||||
, method = "spearman"
|
||||
, use = "pairwise.complete.obs")$r
|
||||
corr2 = round(corr2, 1)
|
||||
|
||||
pmat2 = psych::corr.test(my_ggcorr_ps
|
||||
, method = "spearman"
|
||||
, adjust = "none"
|
||||
, use = "pairwise.complete.obs")$p
|
||||
|
||||
corr1== corr2
|
||||
pmat1==pmat2
|
||||
|
||||
#------------------------
|
||||
# Generate ggcorr PS plot
|
||||
#------------------------
|
||||
cat("ggCorr plot PS:", plot_ggcorr_all_ps)
|
||||
#png(filename = plot_ggcorr_all_ps, width = 1024, height = 768, units = "px", pointsize = 20)
|
||||
ggcorr_ps = ggcorrplot(corr1
|
||||
, p.mat = pmat1
|
||||
, hc.order = TRUE
|
||||
, outline.col = "black"
|
||||
, ggtheme = ggplot2::theme_gray
|
||||
, colors = c("#6D9EC1", "white", "#E46726")
|
||||
, title = "DUET and Foldx stability")
|
||||
|
||||
|
||||
ggcorr_ps
|
||||
#dev.off()
|
||||
|
||||
#===========================
|
||||
# Data for Correlation plots: LIG
|
||||
#===========================
|
||||
table(df_lig$ligand_outcome)
|
||||
|
||||
df_lig$log10_or_mychisq = log10(df_lig$or_mychisq)
|
||||
df_lig$neglog_pval_fisher = -log10(df_lig$pval_fisher)
|
||||
|
||||
|
||||
df_lig$log10_or_kin = log10(df_lig$or_kin)
|
||||
df_lig$neglog_pwald_kin = -log10(df_lig$pwald_kin)
|
||||
|
||||
# subset data to generate pairwise correlations
|
||||
cols_to_select_lig = c("affinity_scaled"
|
||||
|
||||
, "log10_or_mychisq"
|
||||
, "neglog_pval_fisher"
|
||||
|
||||
, "or_kin"
|
||||
, "neglog_pwald_kin"
|
||||
|
||||
, "af"
|
||||
|
||||
, "asa"
|
||||
, "rsa"
|
||||
, "kd_values"
|
||||
, "rd_values"
|
||||
|
||||
, "ligand_outcome"
|
||||
, drug)
|
||||
|
||||
corr_data_lig = df_lig[, cols_to_select_lig]
|
||||
|
||||
dim(corr_data_lig)
|
||||
|
||||
# assign nice colnames (for display)
|
||||
my_corr_colnames_lig = c("Ligand Affinity"
|
||||
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
|
||||
, "OR (adjusted)"
|
||||
, "-Log(P wald)"
|
||||
|
||||
, "AF"
|
||||
|
||||
, "ASA"
|
||||
, "RSA"
|
||||
, "KD"
|
||||
, "RD"
|
||||
|
||||
, "ligand_outcome"
|
||||
, drug)
|
||||
|
||||
length(my_corr_colnames)
|
||||
|
||||
colnames(corr_data_lig)
|
||||
colnames(corr_data_lig) <- my_corr_colnames_lig
|
||||
colnames(corr_data_lig)
|
||||
|
||||
#------------------------
|
||||
# Data for ggcorr LIG plot
|
||||
#------------------------
|
||||
|
||||
start = 1
|
||||
end_ggcorr_lig = which(colnames(corr_data_lig) == "ligand_outcome"); end_ggcorr_lig # should be the last column
|
||||
offset = 1
|
||||
|
||||
my_ggcorr_lig = corr_data_lig[start:(end_ggcorr_lig-1)]
|
||||
head(my_ggcorr_lig); str(my_ggcorr_lig)
|
||||
|
||||
# correlation matrix
|
||||
corr1_lig <- round(cor(my_ggcorr_lig, method = "spearman", use = "pairwise.complete.obs"), 1)
|
||||
|
||||
# p-value matrix
|
||||
pmat1_lig <- cor_pmat(my_ggcorr_lig, method = "spearman", use = "pairwise.complete.obs")
|
||||
|
||||
corr2_lig = psych::corr.test(my_ggcorr_lig
|
||||
, method = "spearman"
|
||||
, use = "pairwise.complete.obs")$r
|
||||
|
||||
corr2_lig = round(corr2_lig, 1)
|
||||
|
||||
pmat2_lig = psych::corr.test(my_ggcorr_lig
|
||||
, method = "spearman"
|
||||
, adjust = "none"
|
||||
, use = "pairwise.complete.obs")$p
|
||||
|
||||
corr1_lig == corr2_lig
|
||||
pmat1_lig == pmat2_lig
|
||||
|
||||
|
||||
# for display order columns by hc order of ps
|
||||
|
||||
#col_order = levels(ggcorr_ps$data[2])
|
||||
|
||||
#col_order <- c("Species", "Petal.Width", "Sepal.Length",
|
||||
#"Sepal.Width", "Petal.Length")
|
||||
#my_data2 <- my_data[, col_order]
|
||||
#my_data2
|
||||
|
||||
#------------------------
|
||||
# Generate ggcorr LIG plot
|
||||
#------------------------
|
||||
cat("ggCorr LIG plot:", plot_ggcorr_all_lig)
|
||||
#svg(plot_ggcorr_all_lig, width = 15, height = 15)
|
||||
#png(plot_ggcorr_all_lig, width = 1024, height = 768, units = "px", pointsize = 20)
|
||||
|
||||
ggcorr_lig = ggcorrplot(corr1_lig
|
||||
, p.mat = pmat1_lig
|
||||
, hc.order = TRUE
|
||||
, outline.col = "black"
|
||||
|
||||
, ggtheme = ggplot2::theme_gray
|
||||
, colors = c("#6D9EC1", "white", "#E46726")
|
||||
, title = "Ligand affinty")
|
||||
|
||||
|
||||
ggcorr_lig
|
||||
#dev.off()
|
||||
|
||||
#######################################################
|
||||
#=============================
|
||||
# combine plots for output
|
||||
#=============================
|
||||
+
|
141
scripts/plotting/plotting_thesis/corr_plots_thesis.R
Normal file
141
scripts/plotting/plotting_thesis/corr_plots_thesis.R
Normal file
|
@ -0,0 +1,141 @@
|
|||
merged_df3 = as.data.frame(merged_df3)
|
||||
corr_plotdf = corr_data_extract(merged_df3, extract_scaled_cols = F)
|
||||
|
||||
#================
|
||||
# stability
|
||||
#================
|
||||
corr_ps_colnames = c("DUET"
|
||||
, "FoldX"
|
||||
, "DeepDDG"
|
||||
, "Dynamut2"
|
||||
, "MAF"
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
#, "ligand_distance"
|
||||
, "dst_mode"
|
||||
, drug)
|
||||
|
||||
corr_df_ps = corr_plotdf[, corr_ps_colnames]
|
||||
|
||||
color_coln = which(colnames(corr_df_ps) == "dst_mode")
|
||||
end = which(colnames(corr_df_ps) == drug)
|
||||
ncol_omit = 2
|
||||
corr_end = end-ncol_omit
|
||||
|
||||
#------------------------
|
||||
# Output: stability corrP
|
||||
#------------------------
|
||||
corr_psP = paste0(outdir_images
|
||||
,tolower(gene)
|
||||
,"_corr_stability.svg" )
|
||||
|
||||
cat("Corr plot stability with coloured dots:", corr_psP)
|
||||
svg(corr_psP, width = 15, height = 15)
|
||||
|
||||
my_corr_pairs(corr_data_all = corr_df_ps
|
||||
, corr_cols = colnames(corr_df_ps[1:corr_end])
|
||||
, corr_method = "spearman" # other options: "pearson" or "kendall"
|
||||
, colour_categ_col = colnames(corr_df_ps[color_coln]) #"dst_mode"
|
||||
, categ_colour = c("red", "blue")
|
||||
, density_show = F
|
||||
, hist_col = "coral4"
|
||||
, dot_size = 1.6
|
||||
, ats = 1.5
|
||||
, corr_lab_size = 3
|
||||
, corr_value_size = 1)
|
||||
|
||||
dev.off()
|
||||
#####################################################
|
||||
DistCutOff = 10
|
||||
LigDist_colname # = "ligand_distance" # from globals
|
||||
ppi2Dist_colname = "interface_dist"
|
||||
naDist_colname = "TBC"
|
||||
#####################################################
|
||||
|
||||
#================
|
||||
# ligand affinity
|
||||
#================
|
||||
corr_lig_colnames = c("mCSM-lig"
|
||||
, "MAF"
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
, "ligand_distance"
|
||||
, "dst_mode"
|
||||
, drug)
|
||||
|
||||
corr_df_lig = corr_plotdf[, corr_lig_colnames]
|
||||
corr_df_lig = corr_df_lig[corr_df_lig[[LigDist_colname]]<DistCutOff,]
|
||||
|
||||
color_coln = which(colnames(corr_df_lig) == "dst_mode")
|
||||
end = which(colnames(corr_df_lig) == drug)
|
||||
ncol_omit = 3 #omit dist col
|
||||
corr_end = end-ncol_omit
|
||||
|
||||
#------------------------
|
||||
# Output: ligand corrP
|
||||
#------------------------
|
||||
corr_ligP = paste0(outdir_images
|
||||
,tolower(gene)
|
||||
,"_corr_lig.svg" )
|
||||
|
||||
cat("Corr plot affinity with coloured dots:", corr_ligP)
|
||||
svg(corr_ligP, width = 10, height = 10)
|
||||
|
||||
my_corr_pairs(corr_data_all = corr_df_lig
|
||||
, corr_cols = colnames(corr_df_lig[1:corr_end])
|
||||
, corr_method = "spearman" # other options: "pearson" or "kendall"
|
||||
, colour_categ_col = colnames(corr_df_lig[color_coln]) #"dst_mode"
|
||||
, categ_colour = c("red", "blue")
|
||||
, density_show = F
|
||||
, hist_col = "coral4"
|
||||
, dot_size = 2
|
||||
, ats = 1.5
|
||||
, corr_lab_size =3
|
||||
, corr_value_size = 1)
|
||||
dev.off()
|
||||
####################################################
|
||||
#================
|
||||
# ppi2 affinity
|
||||
#================
|
||||
corr_ppi2_colnames = c("mCSM-PPI2"
|
||||
, "MAF"
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
, "interface_dist"
|
||||
, "dst_mode"
|
||||
, drug)
|
||||
|
||||
|
||||
corr_df_ppi2 = corr_plotdf[, corr_ppi2_colnames]
|
||||
corr_df_ppi2 = corr_df_ppi2[corr_df_ppi2[[ppi2Dist_colname]]<DistCutOff,]
|
||||
|
||||
color_coln = which(colnames(corr_df_ppi2) == "dst_mode")
|
||||
end = which(colnames(corr_df_ppi2) == drug)
|
||||
ncol_omit = 3 #omit dist col
|
||||
corr_end = end-ncol_omit
|
||||
|
||||
#------------------------
|
||||
# Output: ppi2 corrP
|
||||
#------------------------
|
||||
corr_ppi2P = paste0(outdir_images
|
||||
,tolower(gene)
|
||||
,"_corr_ppi2.svg" )
|
||||
|
||||
cat("Corr plot ppi2 with coloured dots:", corr_ppi2P)
|
||||
svg(corr_ppi2P, width = 10, height = 10)
|
||||
|
||||
my_corr_pairs(corr_data_all = corr_df_ppi2
|
||||
, corr_cols = colnames(corr_df_ppi2[1:corr_end])
|
||||
, corr_method = "spearman" # other options: "pearson" or "kendall"
|
||||
, colour_categ_col = colnames(corr_df_ppi2[color_coln]) #"dst_mode"
|
||||
, categ_colour = c("red", "blue")
|
||||
, density_show = F
|
||||
, hist_col = "coral4"
|
||||
, dot_size = 2
|
||||
, ats = 1.5
|
||||
, corr_lab_size = 3
|
||||
, corr_value_size = 1)
|
||||
|
||||
#==================
|
||||
# mCSSM-NA affinity
|
||||
#==================
|
138
scripts/plotting/plotting_thesis/linage_dist_ens_stability.R
Normal file
138
scripts/plotting/plotting_thesis/linage_dist_ens_stability.R
Normal file
|
@ -0,0 +1,138 @@
|
|||
#!/usr/bin/env Rscript
|
||||
|
||||
#########################################################
|
||||
# TASK: Lineage dist plots for stability:
|
||||
# average the four tools
|
||||
|
||||
# func from : lineage_dist.R
|
||||
# plotdf
|
||||
# , x_axis = "duet_scaled"
|
||||
# , y_axis = "lineage_labels"
|
||||
# , x_lab = "DUET"
|
||||
# , all_lineages = F
|
||||
# , use_lineages = c("L1", "L2", "L3", "L4")
|
||||
# , with_facet = F
|
||||
# , facet_wrap_var = "" # FIXME: document what this is for
|
||||
# , fill_categ = "mutation_info_labels"
|
||||
# , fill_categ_cols = c("#E69F00", "#999999")
|
||||
# , my_ats = 15 # axis text size
|
||||
# , my_als = 20 # axis label size
|
||||
# , my_leg_ts = 16
|
||||
# , my_leg_title = 16
|
||||
# , my_strip_ts = 20
|
||||
# , leg_pos = c(0.8, 0.9)
|
||||
# , leg_pos_wf = c("top", "left", "bottom", "right")
|
||||
# , leg_dir_wf = c("horizontal", "vertical")
|
||||
# , leg_label = ""
|
||||
#########################################################
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
outdir_images = paste0("~/git/Writing/thesis/images/results/"
|
||||
, tolower(gene), "/")
|
||||
cat("plots will output to:", outdir_images)
|
||||
#########################################################
|
||||
#=======
|
||||
# Data
|
||||
#=======
|
||||
df2 = merged_df2
|
||||
|
||||
#==================================
|
||||
# PREFORMATTING: for consistency
|
||||
# IMPORTANT for calculating effects
|
||||
#==================================
|
||||
head(df2$ddg_foldx)
|
||||
df2['ddg_foldxC'] = abs(df2$ddg_foldx)
|
||||
head(df2['ddg_foldxC'])
|
||||
|
||||
# reverse signs for foldx scaled values for consistency with other tools
|
||||
df2['foldx_scaled_signC'] = abs(df2$foldx_scaled)
|
||||
|
||||
# remove the old ones from
|
||||
rm_foldx_cols = c("ddg_foldx","foldx_scaled")
|
||||
raw_cols_stab_revised = raw_cols_stability[!raw_cols_stability%in%rm_foldx_cols]
|
||||
raw_cols_stab_revised = c(raw_cols_stab_revised,"ddg_foldxC")
|
||||
|
||||
scaled_cols_stab_revised = scaled_cols_stability[!scaled_cols_stability%in%rm_foldx_cols]
|
||||
scaled_cols_stab_revised = c(scaled_cols_stab_revised, "foldx_scaled_signC")
|
||||
|
||||
|
||||
#=================
|
||||
# PREFORMATTING: for consistency
|
||||
#=================
|
||||
df2$sensitivity = ifelse(df2$dst_mode == 1, "R", "S")
|
||||
table(df2$sensitivity)
|
||||
|
||||
cols_to_extract = colnames(df2)[colnames(df2)%in%c(common_cols
|
||||
, outcome_cols_stability
|
||||
, raw_cols_stability
|
||||
, scaled_cols_stability
|
||||
, raw_cols_stab_revised
|
||||
, scaled_cols_stab_revised
|
||||
, "lineage","lineage_labels")]
|
||||
|
||||
df2_plot = df2[, cols_to_extract]
|
||||
|
||||
all(table(df2_plot$lineage) == table(df2_plot$lineage_labels))
|
||||
|
||||
# find which stability cols to average: should contain revised foldx
|
||||
if ("foldx_scaled_signC"%in%colnames(df2_plot)){
|
||||
cat("\nPASS: finding stability cols to average")
|
||||
cols2avg_new = which(colnames(df2_plot)%in%scaled_cols_stab_revised)
|
||||
}else{
|
||||
stop("\nAbort: Foldx column has opposing sign. Can't proceed to avergae.")
|
||||
}
|
||||
|
||||
# ensemble average across predictors
|
||||
df2_plot['ens_stab_new'] = rowMeans(df2_plot[, cols2avg_new])
|
||||
|
||||
head(df2_plot$position); head(df2_plot$mutationinformation)
|
||||
table(df2_plot['ens_stab_new'])
|
||||
|
||||
# scaling average values
|
||||
df2_plot["ens_stab_new_scaled"] = lapply(df2_plot["ens_stab_new"]
|
||||
, function(x) {
|
||||
scales::rescale_mid(x
|
||||
, to = c(-1,1)
|
||||
, from = c( min(df2_plot["ens_stab_new"])
|
||||
, max(df2_plot["ens_stab_new"]))
|
||||
, mid = 0
|
||||
#, from = c(0,1))
|
||||
)})
|
||||
|
||||
min(df2_plot['ens_stab_new']); max(df2_plot['ens_stab_new'])
|
||||
foo = df2_plot[c("cols2avg_new", "ens_stab_new_scaled")]
|
||||
min(df2_plot['ens_stab_new_scaled']); max(df2_plot['ens_stab_new_scaled'])
|
||||
|
||||
###########################################################
|
||||
#====================
|
||||
# Output Lineage plot
|
||||
#====================
|
||||
linD_ens_stabP = paste0(outdir_images
|
||||
, tolower(gene)
|
||||
,"_linD_ens_stabP.svg")
|
||||
|
||||
cat("\nOutput plot:", linD_ens_stabP)
|
||||
svg(linD_ens_stabP, width = 10, height = 10)
|
||||
|
||||
linP_dm_om = lineage_distP(df2_plot
|
||||
, with_facet = F
|
||||
, x_axis = "ens_stab_new_scaled"
|
||||
, y_axis = "lineage_labels"
|
||||
, x_lab = "Average stability"
|
||||
#, fill_categ = "mutation_info_orig", fill_categ_cols = c("#E69F00", "#999999")
|
||||
, fill_categ = "sensitivity"
|
||||
, fill_categ_cols = c("red", "blue")
|
||||
, label_categories = c("Resistant", "Sensitive")
|
||||
, leg_label = ""
|
||||
, my_ats = 22 # axis text size
|
||||
, my_als = 22 # axis label size
|
||||
, my_leg_ts = 22
|
||||
, my_leg_title = 22
|
||||
, my_strip_ts = 22
|
||||
, alpha = 0.56
|
||||
)
|
||||
|
||||
linP_dm_om
|
||||
dev.off()
|
236
scripts/plotting/plotting_thesis/preformatting.R
Normal file
236
scripts/plotting/plotting_thesis/preformatting.R
Normal file
|
@ -0,0 +1,236 @@
|
|||
#!/usr/bin/env Rscript
|
||||
#source("~/git/LSHTM_analysis/config/alr.R")
|
||||
source("~/git/LSHTM_analysis/config/embb.R")
|
||||
#source("~/git/LSHTM_analysis/config/katg.R")
|
||||
#source("~/git/LSHTM_analysis/config/gid.R")
|
||||
#source("~/git/LSHTM_analysis/config/pnca.R")
|
||||
#source("~/git/LSHTM_analysis/config/rpob.R")
|
||||
|
||||
# get plottting dfs
|
||||
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
|
||||
###################################################################
|
||||
# FIXME: ADD distance to NA when SP replies
|
||||
dist_columns = c("ligand_distance", "interface_dist")
|
||||
DistCutOff = 10
|
||||
common_cols = c("mutationinformation"
|
||||
, "X5uhc_position"
|
||||
, "X5uhc_offset"
|
||||
, "position"
|
||||
, "dst_mode"
|
||||
, "mutation_info_labels"
|
||||
, "sensitivity", dist_columns )
|
||||
|
||||
#===================
|
||||
# stability cols
|
||||
#===================
|
||||
raw_cols_stability = c("duet_stability_change"
|
||||
, "deepddg"
|
||||
, "ddg_dynamut2"
|
||||
, "ddg_foldx")
|
||||
|
||||
scaled_cols_stability = c("duet_scaled"
|
||||
, "deepddg_scaled"
|
||||
, "ddg_dynamut2_scaled"
|
||||
, "foldx_scaled")
|
||||
|
||||
outcome_cols_stability = c("duet_outcome"
|
||||
, "deepddg_outcome"
|
||||
, "ddg_dynamut2_outcome"
|
||||
, "foldx_outcome")
|
||||
|
||||
#===================
|
||||
# affinity cols
|
||||
#===================
|
||||
raw_cols_affinity = c("ligand_affinity_change"
|
||||
, "mmcsm_lig"
|
||||
, "mcsm_ppi2_affinity"
|
||||
, "mcsm_na_affinity")
|
||||
|
||||
scaled_cols_affinity = c("affinity_scaled"
|
||||
, "mmcsm_lig_scaled"
|
||||
, "mcsm_ppi2_scaled"
|
||||
, "mcsm_na_scaled" )
|
||||
|
||||
outcome_cols_affinity = c( "ligand_outcome"
|
||||
, "mmcsm_lig_outcome"
|
||||
, "mcsm_ppi2_outcome"
|
||||
, "mcsm_na_outcome")
|
||||
#===================
|
||||
# conservation cols
|
||||
#===================
|
||||
raw_cols_conservation = c("consurf_score"
|
||||
, "snap2_score"
|
||||
, "provean_score")
|
||||
|
||||
scaled_cols_conservation = c("consurf_scaled"
|
||||
, "snap2_scaled"
|
||||
, "provean_scaled")
|
||||
|
||||
# CANNOT strictly be used, as categories are not identical with conssurf missing altogether
|
||||
outcome_cols_conservation = c("provean_outcome"
|
||||
, "snap2_outcome"
|
||||
, "consurf_colour_rev"
|
||||
, "consurf_colour"#doesn't exist,use this mapping
|
||||
)
|
||||
|
||||
all_cols = c(common_cols
|
||||
, raw_cols_stability
|
||||
, scaled_cols_stability
|
||||
, outcome_cols_stability
|
||||
, raw_cols_affinity
|
||||
, scaled_cols_affinity
|
||||
, outcome_cols_affinity
|
||||
, raw_cols_conservation
|
||||
, scaled_cols_conservation
|
||||
, outcome_cols_conservation)
|
||||
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
|
||||
|
||||
####################################
|
||||
# merged_df3: NECESSARY pre-processing
|
||||
###################################
|
||||
df3 = merged_df3
|
||||
|
||||
#=================
|
||||
# PREFORMATTING: for consistency
|
||||
#=================
|
||||
df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S")
|
||||
table(df3$sensitivity)
|
||||
|
||||
# ConSurf labels
|
||||
consurf_colOld = "consurf_colour_rev"
|
||||
consurf_colNew = "consurf_outcome"
|
||||
df3[[consurf_colNew]] = df3[[consurf_colOld]]
|
||||
df3[[consurf_colNew]] = as.factor(df3[[consurf_colNew]])
|
||||
df3[[consurf_colNew]]
|
||||
levels(df3$consurf_outcome) = c( "nsd", 1, 2, 3, 4, 5, 6, 7, 8, 9)
|
||||
levels(df3$consurf_outcome)
|
||||
|
||||
# SNAP2 labels
|
||||
snap2_colname = "snap2_outcome"
|
||||
df3[[snap2_colname]] <- str_replace(df3[[snap2_colname]], "effect", "Effect")
|
||||
df3[[snap2_colname]] <- str_replace(df3[[snap2_colname]], "neutral", "Neutral")
|
||||
|
||||
# for ref: not needed perse as function already does this and assigns labels for barplots
|
||||
# labels_duet = levels(as.factor(df3$duet_outcome))
|
||||
# labels_foldx = levels(as.factor(df3$foldx_outcome))
|
||||
# labels_deepddg = levels(as.factor(df3$deepddg_outcome))
|
||||
# labels_ddg_dynamut2_outcome = levels(as.factor(df3$ddg_dynamut2_outcome))
|
||||
#
|
||||
# labels_lig = levels(as.factor(df3_lig$ligand_outcome))
|
||||
# labels_mmlig = levels(as.factor(df3_lig$mmcsm_lig_outcome))
|
||||
# labels_ppi2 = levels(as.factor(df3_ppi2$mcsm_ppi2_outcome))
|
||||
#
|
||||
# labels_provean = levels(as.factor(df3$provean_outcome))
|
||||
# labels_snap2 = levels(as.factor(df3$snap2_outcome))
|
||||
# labels_consurf = levels(as.factor(df3$consurf_colour_rev))
|
||||
# df3$consurf_colour_rev = as.factor(df3$consurf_colour_rev )
|
||||
##############################################################################
|
||||
#######################################
|
||||
# merged_df2: NECESSARY pre-processing
|
||||
######################################
|
||||
df2 = merged_df2
|
||||
|
||||
#=================
|
||||
# PREFORMATTING: for consistency
|
||||
#=================
|
||||
df2$sensitivity = ifelse(df2$dst_mode == 1, "R", "S")
|
||||
table(df2$sensitivity)
|
||||
|
||||
#----------------------------------------------------
|
||||
# Create dst2: fill na in dst with value of dst_mode
|
||||
# for epistasis
|
||||
#----------------------------------------------------
|
||||
df2$dst2 = ifelse(is.na(df2$dst), df2$dst_mode, df2f$dst)
|
||||
|
||||
#----------------------------------------------------
|
||||
# reverse signs for foldx scaled values for
|
||||
# to allow average with other tools
|
||||
#----------------------------------------------------
|
||||
head(df2['ddg_foldx'])
|
||||
df2['ddg_foldxC'] = abs(df2$ddg_foldx)
|
||||
head(df2['ddg_foldxC'])
|
||||
|
||||
head(df2['foldx_scaled'])
|
||||
df2['foldx_scaled_signC'] = abs(df2$foldx_scaled)
|
||||
head(df2['foldx_scaled_signC'])
|
||||
|
||||
rm_foldx_cols = c("ddg_foldx","foldx_scaled")
|
||||
raw_cols_stab_revised = raw_cols_stability[!raw_cols_stability%in%rm_foldx_cols]
|
||||
raw_cols_stab_revised = c(raw_cols_stab_revised,"ddg_foldxC")
|
||||
|
||||
scaled_cols_stab_revised = scaled_cols_stability[!scaled_cols_stability%in%rm_foldx_cols]
|
||||
scaled_cols_stab_revised = c(scaled_cols_stab_revised, "foldx_scaled_signC")
|
||||
|
||||
######################################################
|
||||
# Affinity related variables
|
||||
DistCutOff = 10
|
||||
LigDist_colname # = "ligand_distance" # from globals
|
||||
ppi2Dist_colname = "interface_dist"
|
||||
naDist_colname = "TBC"
|
||||
|
||||
######################################################
|
||||
# corr colnames
|
||||
# drug
|
||||
# "dst_mode"
|
||||
# "ligand_distance"
|
||||
# "DUET"
|
||||
# "mCSM-lig"
|
||||
# "FoldX"
|
||||
# "DeepDDG"
|
||||
# "ASA"
|
||||
# "RSA"
|
||||
# "KD"
|
||||
# "RD"
|
||||
# "Consurf"
|
||||
# "SNAP2"
|
||||
# "MAF"
|
||||
# "Log (OR)"
|
||||
# "-Log (P)"
|
||||
# "Dynamut2"
|
||||
# "mCSM-PPI2"
|
||||
# "interface_dist"
|
||||
|
||||
corr_ps_colnames = c("DUET"
|
||||
, "FoldX"
|
||||
, "DeepDDG"
|
||||
, "Dynamut2"
|
||||
|
||||
, "MAF"
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
|
||||
# , "ASA"
|
||||
# , "RSA"
|
||||
# , "KD"
|
||||
# , "RD"
|
||||
# , "Consurf"
|
||||
# , "SNAP2"
|
||||
|
||||
#, "mCSM-lig"
|
||||
#, "ligand_distance"
|
||||
#, "mCSM-PPI2"
|
||||
#, "interface_dist"
|
||||
, "dst_mode"
|
||||
, drug
|
||||
)
|
||||
|
||||
corr_lig_colnames = c("mCSM-lig"
|
||||
, "MAF"
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
, "ligand_distance"
|
||||
, "dst_mode"
|
||||
, drug)
|
||||
|
||||
corr_ppi2_colnames = c("mCSM-PPI2"
|
||||
, "MAF"
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
, "interface_dist"
|
||||
, "dst_mode"
|
||||
, drug)
|
332
scripts/plotting/replaceBfactor_pdb.R
Executable file
332
scripts/plotting/replaceBfactor_pdb.R
Executable file
|
@ -0,0 +1,332 @@
|
|||
#!/usr/bin/env Rscript
|
||||
|
||||
#########################################################
|
||||
# TASK: Replace B-factors in the pdb file with the mean
|
||||
# normalised stability values.
|
||||
|
||||
# read pdb file
|
||||
# make two copies so you can replace B factors for 1)duet
|
||||
# 2)affinity values and output 2 separate pdbs for
|
||||
# rendering on chimera
|
||||
|
||||
# read mcsm mean stability value files
|
||||
# extract the respective mean values and assign to the
|
||||
# b-factor column within their respective pdbs
|
||||
|
||||
# generate some distribution plots for inspection
|
||||
|
||||
#########################################################
|
||||
# working dir and loading libraries
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||
cat(c(getwd(),"\n"))
|
||||
|
||||
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
|
||||
library(bio3d)
|
||||
require("getopt", quietly = TRUE) # cmd parse arguments
|
||||
#========================================================
|
||||
#drug = "pyrazinamide"
|
||||
#gene = "pncA"
|
||||
|
||||
# command line args
|
||||
spec = matrix(c(
|
||||
"drug" , "d", 1, "character",
|
||||
"gene" , "g", 1, "character"
|
||||
), byrow = TRUE, ncol = 4)
|
||||
|
||||
opt = getopt(spec)
|
||||
|
||||
drug = opt$drug
|
||||
gene = opt$gene
|
||||
|
||||
if(is.null(drug)|is.null(gene)) {
|
||||
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
|
||||
}
|
||||
#========================================================
|
||||
gene_match = paste0(gene,"_p.")
|
||||
cat(gene_match)
|
||||
|
||||
#=============
|
||||
# directories
|
||||
#=============
|
||||
datadir = paste0("~/git/Data")
|
||||
indir = paste0(datadir, "/", drug, "/input")
|
||||
outdir = paste0("~/git/Data", "/", drug, "/output")
|
||||
#outdir_plots = paste0("~/git/Data", "/", drug, "/output/plots")
|
||||
outdir_plots = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
|
||||
|
||||
#======
|
||||
# input
|
||||
#======
|
||||
in_filename_pdb = paste0(tolower(gene), "_complex.pdb")
|
||||
infile_pdb = paste0(indir, "/", in_filename_pdb)
|
||||
cat(paste0("Input file:", infile_pdb) )
|
||||
|
||||
#in_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
|
||||
#infile_mean_stability = paste0(outdir, "/", in_filename_mean_stability)
|
||||
|
||||
in_filename_mean_stability = paste0(tolower(gene), "_mean_ens_stab_aff.csv")
|
||||
infile_mean_stability = paste0(outdir_plots, "/", in_filename_mean_stability)
|
||||
|
||||
cat(paste0("Input file:", infile_mean_stability) )
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
#out_filename_duet_mspdb = paste0(tolower(gene), "_complex_bduet_ms.pdb")
|
||||
out_filename_duet_mspdb = paste0(tolower(gene), "_complex_b_stab_ms.pdb")
|
||||
outfile_duet_mspdb = paste0(outdir_plots, "/", out_filename_duet_mspdb)
|
||||
print(paste0("Output file:", outfile_duet_mspdb))
|
||||
|
||||
out_filename_lig_mspdb = paste0(tolower(gene), "_complex_blig_ms.pdb")
|
||||
outfile_lig_mspdb = paste0(outdir_plots, "/", out_filename_lig_mspdb)
|
||||
print(paste0("Output file:", outfile_lig_mspdb))
|
||||
|
||||
#%%===============================================================
|
||||
#NOTE: duet here refers to the ensemble stability values
|
||||
|
||||
###########################
|
||||
# Read file: average stability values
|
||||
# or mcsm_normalised file
|
||||
###########################
|
||||
my_df <- read.csv(infile_mean_stability, header = T)
|
||||
str(my_df)
|
||||
|
||||
#############
|
||||
# Read pdb
|
||||
#############
|
||||
# list of 8
|
||||
my_pdb = read.pdb(infile_pdb
|
||||
, maxlines = -1
|
||||
, multi = FALSE
|
||||
, rm.insert = FALSE
|
||||
, rm.alt = TRUE
|
||||
, ATOM.only = FALSE
|
||||
, hex = FALSE
|
||||
, verbose = TRUE)
|
||||
|
||||
rm(in_filename_mean_stability, in_filename_pdb)
|
||||
|
||||
# assign separately for duet and ligand
|
||||
my_pdb_duet = my_pdb
|
||||
my_pdb_lig = my_pdb
|
||||
|
||||
#=========================================================
|
||||
# Replacing B factor with mean stability scores
|
||||
# within the respective dfs
|
||||
#==========================================================
|
||||
# extract atom list into a variable
|
||||
# since in the list this corresponds to data frame, variable will be a df
|
||||
#df_duet = my_pdb_duet[[1]]
|
||||
df_duet= my_pdb_duet[['atom']]
|
||||
df_lig = my_pdb_lig[['atom']]
|
||||
|
||||
# make a copy: required for downstream sanity checks
|
||||
d2_duet = df_duet
|
||||
d2_lig = df_lig
|
||||
|
||||
# sanity checks: B factor
|
||||
max(df_duet$b); min(df_duet$b)
|
||||
max(df_lig$b); min(df_lig$b)
|
||||
|
||||
#*******************************************
|
||||
# histograms and density plots for inspection
|
||||
# 1: original B-factors
|
||||
# 2: original mean stability values
|
||||
# 3: replaced B-factors with mean stability values
|
||||
#*********************************************
|
||||
# Set the margin on all sides
|
||||
par(oma = c(3,2,3,0)
|
||||
, mar = c(1,3,5,2)
|
||||
#, mfrow = c(3,2)
|
||||
, mfrow = c(3,4))
|
||||
|
||||
#=============
|
||||
# Row 1 plots: original B-factors
|
||||
# duet and affinity
|
||||
#=============
|
||||
hist(df_duet$b
|
||||
, xlab = ""
|
||||
, main = "Bfactor stability")
|
||||
|
||||
plot(density(df_duet$b)
|
||||
, xlab = ""
|
||||
, main = "Bfactor stability")
|
||||
|
||||
|
||||
hist(df_lig$b
|
||||
, xlab = ""
|
||||
, main = "Bfactor affinity")
|
||||
|
||||
plot(density(df_lig$b)
|
||||
, xlab = ""
|
||||
, main = "Bfactor affinity")
|
||||
|
||||
#=============
|
||||
# Row 2 plots: original mean stability values
|
||||
# duet and affinity
|
||||
#=============
|
||||
|
||||
#hist(my_df$averaged_duet
|
||||
hist(my_df$avg_ens_stability_scaled
|
||||
, xlab = ""
|
||||
, main = "mean stability values")
|
||||
|
||||
#plot(density(my_df$averaged_duet)
|
||||
plot(density(my_df$avg_ens_stability_scaled)
|
||||
, xlab = ""
|
||||
, main = "mean stability values")
|
||||
|
||||
#hist(my_df$averaged_affinity
|
||||
hist(my_df$avg_ens_affinity_scaled
|
||||
, xlab = ""
|
||||
, main = "mean affinity values")
|
||||
|
||||
#plot(density(my_df$averaged_affinity)
|
||||
plot(density(my_df$avg_ens_affinity_scaled)
|
||||
, xlab = ""
|
||||
, main = "mean affinity values")
|
||||
|
||||
#==============
|
||||
# Row 3 plots: replaced B-factors with mean stability values
|
||||
# After actual replacement in the b factor column
|
||||
#===============
|
||||
################################################################
|
||||
#=========
|
||||
# step 0_P1: DONT RUN once you have double checked the matched output
|
||||
#=========
|
||||
# sanity check: match and assign to a separate column to double check
|
||||
# colnames(my_df)
|
||||
# df_duet$duet_scaled = my_df$averge_duet_scaled[match(df_duet$resno, my_df$position)]
|
||||
|
||||
#=========
|
||||
# step 1_P1
|
||||
#=========
|
||||
# Be brave and replace in place now (don"t run sanity check)
|
||||
# this makes all the B-factor values in the non-matched positions as NA
|
||||
|
||||
#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)]
|
||||
#df_lig$b = my_df$averaged_affinity_scaled[match(df_lig$resno, my_df$position)]
|
||||
|
||||
df_duet$b = my_df$avg_ens_stability_scaled[match(df_duet$resno, my_df$position)]
|
||||
df_lig$b = my_df$avg_ens_affinity_scaled[match(df_lig$resno, my_df$position)]
|
||||
|
||||
#=========
|
||||
# step 2_P1
|
||||
#=========
|
||||
# count NA in Bfactor
|
||||
b_na_duet = sum(is.na(df_duet$b)) ; b_na_duet
|
||||
b_na_lig = sum(is.na(df_lig$b)) ; b_na_lig
|
||||
|
||||
# count number of 0"s in Bactor
|
||||
sum(df_duet$b == 0)
|
||||
sum(df_lig$b == 0)
|
||||
|
||||
# replace all NA in b factor with 0
|
||||
na_rep = 2
|
||||
df_duet$b[is.na(df_duet$b)] = na_rep
|
||||
df_lig$b[is.na(df_lig$b)] = na_rep
|
||||
|
||||
# # sanity check: should be 0 and True
|
||||
# # duet and lig
|
||||
# if ( (sum(df_duet$b == na_rep) == b_na_duet) && (sum(df_lig$b == na_rep) == b_na_lig) ) {
|
||||
# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig")
|
||||
# } else {
|
||||
# print("FAIL: NA replacement in df_duet NOT successful")
|
||||
# quit()
|
||||
# }
|
||||
#
|
||||
# max(df_duet$b); min(df_duet$b)
|
||||
#
|
||||
# # sanity checks: should be True
|
||||
# if( (max(df_duet$b) == max(my_df$avg_ens_stability_scaled)) & (min(df_duet$b) == min(my_df$avg_ens_stability_scaled)) ){
|
||||
# print("PASS: B-factors replaced correctly in df_duet")
|
||||
# } else {
|
||||
# print ("FAIL: To replace B-factors in df_duet")
|
||||
# quit()
|
||||
# }
|
||||
|
||||
# if( (max(df_lig$b) == max(my_df$avg_ens_affinity_scaled)) & (min(df_lig$b) == min(my_df$avg_ens_affinity_scaled)) ){
|
||||
# print("PASS: B-factors replaced correctly in df_lig")
|
||||
# } else {
|
||||
# print ("FAIL: To replace B-factors in df_lig")
|
||||
# quit()
|
||||
# }
|
||||
|
||||
#=========
|
||||
# step 3_P1
|
||||
#=========
|
||||
# sanity check: dim should be same before reassignment
|
||||
if ( (dim(df_duet)[1] == dim(d2_duet)[1]) & (dim(df_lig)[1] == dim(d2_lig)[1]) &
|
||||
(dim(df_duet)[2] == dim(d2_duet)[2]) & (dim(df_lig)[2] == dim(d2_lig)[2])
|
||||
){
|
||||
print("PASS: Dims of both dfs as expected")
|
||||
} else {
|
||||
print ("FAIL: Dims mismatch")
|
||||
quit()}
|
||||
|
||||
#=========
|
||||
# step 4_P1:
|
||||
# VERY important
|
||||
#=========
|
||||
# assign it back to the pdb file
|
||||
my_pdb_duet[['atom']] = df_duet
|
||||
max(df_duet$b); min(df_duet$b)
|
||||
table(df_duet$b)
|
||||
sum(is.na(df_duet$b))
|
||||
|
||||
my_pdb_lig[['atom']] = df_lig
|
||||
max(df_lig$b); min(df_lig$b)
|
||||
|
||||
#=========
|
||||
# step 5_P1
|
||||
#=========
|
||||
cat(paste0("output file duet mean stability pdb:", outfile_duet_mspdb))
|
||||
write.pdb(my_pdb_duet, outfile_duet_mspdb)
|
||||
|
||||
cat(paste0("output file ligand mean stability pdb:", outfile_lig_mspdb))
|
||||
write.pdb(my_pdb_lig, outfile_lig_mspdb)
|
||||
|
||||
#============================
|
||||
# Add the 3rd histogram and density plots for comparisons
|
||||
#============================
|
||||
# Plots continued...
|
||||
# Row 3 plots: hist and density of replaced B-factors with stability values
|
||||
hist(df_duet$b
|
||||
, xlab = ""
|
||||
, main = "repalcedB duet")
|
||||
|
||||
plot(density(df_duet$b)
|
||||
, xlab = ""
|
||||
, main = "replacedB duet")
|
||||
|
||||
|
||||
hist(df_lig$b
|
||||
, xlab = ""
|
||||
, main = "repalcedB affinity")
|
||||
|
||||
plot(density(df_lig$b)
|
||||
, xlab = ""
|
||||
, main = "replacedB affinity")
|
||||
|
||||
# graph titles
|
||||
mtext(text = "Frequency"
|
||||
, side = 2
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
|
||||
mtext(text = paste0(tolower(gene), ": Stability Distribution")
|
||||
, side = 3
|
||||
, line = 0
|
||||
, outer = TRUE)
|
||||
#============================================
|
||||
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
# NOTE: This replaced B-factor distribution has the same
|
||||
# x-axis as the PredAff normalised values, but the distribution
|
||||
# is affected since 0 is overinflated/or hs an additional blip because
|
||||
# of the positions not associated with resistance. This is because all the positions
|
||||
# where there are no SNPs have been assigned 0???
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue