diff --git a/scripts/plotting/redundant/combining_dfs_plotting.R b/scripts/plotting/redundant/combining_dfs_plotting.R new file mode 100644 index 0000000..c45ef43 --- /dev/null +++ b/scripts/plotting/redundant/combining_dfs_plotting.R @@ -0,0 +1,435 @@ +#!/usr/bin/env Rscript +######################################################### +# TASK: To combine struct params and meta data for plotting +# Input csv files: +# 1) _all_params.csv +# 2) _meta_data.csv + +# Output: +# 1) muts with opposite effects on stability +# 2) large combined df including NAs for AF, OR,etc +# Dim: same no. of rows as gene associated meta_data_with_AFandOR +# 3) small combined df including NAs for AF, OR, etc. +# Dim: same as mcsm data +# 4) large combined df excluding NAs +# Dim: dim(#1) - na_count_df2 +# 5) small combined df excluding NAs +# Dim: dim(#2) - na_count_df3 + +# This script is sourced from other .R scripts for plotting +######################################################### +#======================================================================= +# working dir and loading libraries +getwd() +setwd("~/git/LSHTM_analysis/scripts/plotting/") +getwd() + +require("getopt", quietly = TRUE) # cmd parse arguments + +# load functions +source("Header_TT.R") +source("../functions/plotting_globals.R") +source("../functions/plotting_data.R") + +############################################################# +# command line args +#******************** +# !!!FUTURE TODO!!! +# Can pass additional params of output/plot dir by user. +# Not strictly required for my workflow since it is optimised +# to have a streamlined input/output flow without filename worries. +#******************** +spec = matrix(c( + "drug" ,"d", 1, "character", + "gene" ,"g", 1, "character", + "data" ,"f", 2, "character" +), byrow = TRUE, ncol = 4) + +opt = getopt(spec) + +#FIXME: detect if script running from cmd, then set these +drug = opt$drug +gene = opt$gene +infile = opt$data + +# hardcoding when not using cmd +#drug = "streptomycin" +#gene = "gid" + +if(is.null(drug)|is.null(gene)) { + stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)") +} + +######################################################### +# call functions with relevant args +#*********************************** +# import_dirs(): returns + # datadir + # indir + # outdir + # plotdir + # dr_muts_col + # other_muts_col + # resistance_col +#*********************************** +import_dirs(drug, gene) +#*********************************** +# plotting_data(): returns + # my_df + # my_df_u + # my_df_u_lig + # dup_muts +#*********************************** +#infile = "/home/tanu/git/Data/streptomycin/output/gid_comb_stab_struc_params.csv" + +if (!exists("infile") && exists("gene")){ +#if (!is.character(infile) && exists("gene")){ + #in_filename_params = paste0(tolower(gene), "_all_params.csv") + #in_filename_params = paste0(tolower(gene), "_comb_stab_struc_params.csv") # part combined for gid + in_filename_params = paste0(tolower(gene), "_comb_afor.csv") # part combined for gid + infile = paste0(outdir, "/", in_filename_params) + cat("\nInput file not specified, assuming filename: ", infile, "\n") +} + +# Get the DFs out of plotting_data() +pd_df = plotting_data(infile) +my_df = pd_df[[1]] +my_df_u = pd_df[[2]] +my_df_u_lig = pd_df[[3]] +dup_muts = pd_df[[4]] + +cat(paste0("Directories imported:" + , "\ndatadir:" , datadir + , "\nindir:" , indir + , "\noutdir:" , outdir + , "\nplotdir:" , plotdir)) + +cat(paste0("\nVariables imported:" + , "\ndrug:" , drug + , "\ngene:" , gene + , "\ngene match:" , gene_match + , "\n")) +#======================================================== +#=========== +# input +#=========== +#in_file1: output of plotting_data.R +# my_df_u + +# infile 2: gene associated meta data +#in_filename_gene_metadata = paste0(tolower(gene), "_meta_data_with_AFandOR.csv") +in_filename_gene_metadata = paste0(tolower(gene), "_metadata.csv") +infile_gene_metadata = paste0(outdir, "/", in_filename_gene_metadata) +cat(paste0("Input infile 2:", infile_gene_metadata)) + +#=========== +# output +#=========== +# other variables that you can write +# primarily called by other scripts for plotting + +# PS combined: +# 1) merged_df2 +# 2) merged_df2_comp +# 3) merged_df3 +# 4) merged_df3_comp + +# LIG combined: +# 5) merged_df2_lig +# 6) merged_df2_comp_lig +# 7) merged_df3_lig +# 8) merged_df3_comp_lig + +#%%=============================================================== + +########################### +# 2: Read file: _meta data.csv +########################### +cat("Reading meta data file:", infile_gene_metadata) + +gene_metadata <- read.csv(infile_gene_metadata + , stringsAsFactors = F + , header = T) +cat("Dim:", dim(gene_metadata)) + +table(gene_metadata$mutation_info) + +# counting NAs in AF, OR cols +# or_mychisq +if (identical(sum(is.na(my_df_u$or_mychisq)) + , sum(is.na(my_df_u$pval_fisher)) + , sum(is.na(my_df_u$af)))){ + cat("\nPASS: NA count match for OR, pvalue and AF\n") + na_count = sum(is.na(my_df_u$af)) + cat("\nNo. of NAs: ", sum(is.na(my_df_u$or_mychisq))) +} else{ + cat("\nFAIL: NA count mismatch" + , "\nNA in OR: ", sum(is.na(my_df_u$or_mychisq)) + , "\nNA in pvalue: ", sum(is.na(my_df_u$pval_fisher)) + , "\nNA in AF:", sum(is.na(my_df_u$af))) +} + +# or kin +if (identical(sum(is.na(my_df_u$or_kin)) + , sum(is.na(my_df_u$pwald_kin)) + , sum(is.na(my_df_u$af_kin)))){ + cat("\nPASS: NA count match for OR, pvalue and AF\n from Kinship matrix calculations") + na_count = sum(is.na(my_df_u$af_kin)) + cat("\nNo. of NAs: ", sum(is.na(my_df_u$or_kin))) +} else{ + cat("\nFAIL: NA count mismatch" + , "\nNA in OR: ", sum(is.na(my_df_u$or_kin)) + , "\nNA in pvalue: ", sum(is.na(my_df_u$pwald_kin)) + , "\nNA in AF:", sum(is.na(my_df_u$af_kin))) +} + +str(gene_metadata) + +################################################################### +# combining: PS +################################################################### +# sort by position (same as my_df) +head(gene_metadata$position) +gene_metadata = gene_metadata[order(gene_metadata$position),] +head(gene_metadata$position) + +#========================= +# Merge 1: merged_df2 +# dfs with NAs in ORs +#========================= +head(my_df_u$mutationinformation) +head(gene_metadata$mutationinformation) + +# Find common columns b/w two df +merging_cols = intersect(colnames(my_df_u), colnames(gene_metadata)) + +cat(paste0("Merging dfs with NAs: big df (1-many relationship b/w id & mut)" + , "\nNo. of merging cols:", length(merging_cols) + , "\nMerging columns identified:")) + +print(merging_cols) + +# using all common cols create confusion, so pick one! +# merging_cols = merging_cols[[1]] +merging_cols = 'mutationinformation' + +cat("\nLinking column being used: mutationinformation") + +# important checks! +table(nchar(my_df_u$mutationinformation)) +table(nchar(my_df_u$wild_type)) +table(nchar(my_df_u$mutant_type)) +table(nchar(my_df_u$position)) + +# all.y because x might contain non-structural positions! +merged_df2 = merge(x = gene_metadata + , y = my_df_u + , by = merging_cols + , all.y = T) + +cat("Dim of merged_df2: ", dim(merged_df2)) + +# Remove duplicate columns +dup_cols = names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))] +cat("\nNo. of duplicate cols:", length(dup_cols)) +check_df_cols = merged_df2[dup_cols] + +identical(check_df_cols$wild_type.x, check_df_cols$wild_type.y) +identical(check_df_cols$position.x, check_df_cols$position.y) +identical(check_df_cols$mutant_type.x, check_df_cols$mutant_type.y) +# False: because some of the ones with OR don't have mutation +identical(check_df_cols$mutation.x, check_df_cols$mutation.y) + +cols_to_drop = names(merged_df2)[grepl("\\.y",names(merged_df2))] +cat("\nNo. of cols to drop:", length(cols_to_drop)) + +# Drop duplicate columns +merged_df2 = merged_df2[,!(names(merged_df2)%in%cols_to_drop)] + +# Drop the '.x' suffix in the colnames +names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))] +colnames(merged_df2) <- gsub("\\.x$", "", colnames(merged_df2)) +names(merged_df2)[grepl("\\.x$|\\.y$", names(merged_df2))] + +head(merged_df2$position) + +# sanity check +cat("Checking nrows in merged_df2") +if(nrow(gene_metadata) == nrow(merged_df2)){ + cat("PASS: nrow(merged_df2) = nrow (gene associated gene_metadata)" + ,"\nExpected no. of rows: ",nrow(gene_metadata) + ,"\nGot no. of rows: ", nrow(merged_df2)) +} else{ + cat("FAIL: nrow(merged_df2)!= nrow(gene associated gene_metadata)" + , "\nExpected no. of rows after merge: ", nrow(gene_metadata) + , "\nGot no. of rows: ", nrow(merged_df2) + , "\nFinding discrepancy") + merged_muts_u = unique(merged_df2$mutationinformation) + meta_muts_u = unique(gene_metadata$mutationinformation) + # find the index where it differs + unique(meta_muts_u[! meta_muts_u %in% merged_muts_u]) + quit() +} + +#========================= +# Merge 2: merged_df3 +# dfs with NAs in ORs +# +# Cannot trust lineage, country from this df as the same mutation +# can have many different lineages +# but this should be good for the numerical corr plots +#========================= +# remove duplicated mutations +cat("Merging dfs without NAs: small df (removing muts with no AF|OR associated)" + ,"\nCannot trust lineage info from this" + ,"\nlinking col: mutationinforamtion" + ,"\nfilename: merged_df3") + +merged_df3 = merged_df2[!duplicated(merged_df2$mutationinformation),] +head(merged_df3$position); tail(merged_df3$position) # should be sorted + +# sanity check +cat("Checking nrows in merged_df3") +if(nrow(my_df_u) == nrow(merged_df3)){ + cat("PASS: No. of rows match with my_df" + ,"\nExpected no. of rows: ", nrow(my_df_u) + ,"\nGot no. of rows: ", nrow(merged_df3)) +} else { + cat("FAIL: No. of rows mismatch" + , "\nNo. of rows my_df: ", nrow(my_df_u) + , "\nNo. of rows merged_df3: ", nrow(merged_df3)) + quit() +} + +# counting NAs in AF, OR cols in merged_df3 +# this is because mcsm has no AF, OR cols, +# so you cannot count NAs +if (identical(sum(is.na(merged_df3$or_kin)) + , sum(is.na(merged_df3$pwald_kin)) + , sum(is.na(merged_df3$af_kin)))){ + cat("PASS: NA count match for OR, pvalue and AF\n") + na_count_df3 = sum(is.na(merged_df3$af_kin)) + cat("No. of NAs: ", sum(is.na(merged_df3$or_kin))) +} else{ + cat("FAIL: NA count mismatch" + , "\nNA in OR: ", sum(is.na(merged_df3$or_kin)) + , "\nNA in pvalue: ", sum(is.na(merged_df3$pwald_kin)) + , "\nNA in AF:", sum(is.na(merged_df3$af_kin))) +} + +#========================= +# Merge3: merged_df2_comp +# same as merge 1 but excluding NAs from ORs, etc. +#========================= +cat("Merging dfs without any NAs: big df (1-many relationship b/w id & mut)" + ,"\nfilename: merged_df2_comp") + +na_count_df2 = sum(is.na(merged_df2$af)) +merged_df2_comp = merged_df2[!is.na(merged_df2$af),] + +# sanity check: no +-1 gymnastics +cat("Checking nrows in merged_df2_comp") +if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count_df2)){ + cat("\nPASS: No. of rows match" + ,"\nDim of merged_df2_comp: " + ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count_df2 + , "\nNo. of rows: ", nrow(merged_df2_comp) + , "\nNo. of cols: ", ncol(merged_df2_comp)) +}else{ + cat("FAIL: No. of rows mismatch" + ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count_df2 + ,"\nGot no. of rows: ", nrow(merged_df2_comp)) +} + +#========================= +# Merge4: merged_df3_comp +# same as merge 2 but excluding NAs from ORs, etc or +# remove duplicate mutation information +#========================= +na_count_df3 = sum(is.na(merged_df3$af)) +#merged_df3_comp = merged_df3_comp[!duplicated(merged_df3_comp$mutationinformation),] # a way + +merged_df3_comp = merged_df3[!is.na(merged_df3$af),] # another way +cat("Checking nrows in merged_df3_comp") + +if(nrow(merged_df3_comp) == (nrow(merged_df3) - na_count_df3)){ + cat("\nPASS: No. of rows match" + ,"\nDim of merged_df3_comp: " + ,"\nExpected no. of rows: ", nrow(merged_df3) - na_count_df3 + , "\nNo. of rows: ", nrow(merged_df3_comp) + , "\nNo. of cols: ", ncol(merged_df3_comp)) +}else{ + cat("FAIL: No. of rows mismatch" + ,"\nExpected no. of rows: ", nrow(merged_df3) - na_count_df3 + ,"\nGot no. of rows: ", nrow(merged_df3_comp)) +} + +# alternate way of deriving merged_df3_comp +foo = merged_df3[!is.na(merged_df3$af),] +bar = merged_df3_comp[!duplicated(merged_df3_comp$mutationinformation),] +# compare dfs: foo and merged_df3_com +all.equal(foo, bar) +#summary(comparedf(foo, bar)) + +#============================================================== + +##################################################################### +# Combining: LIG +##################################################################### + +#========================= +# Merges 5-8 +#========================= + +merged_df2_lig = merged_df2[merged_df2$ligand_distance<10,] +merged_df2_comp_lig = merged_df2_comp[merged_df2_comp$ligand_distance<10,] + +merged_df3_lig = merged_df3[merged_df3$ligand_distance<10,] +merged_df3_comp_lig = merged_df3_comp[merged_df3_comp$ligand_distance<10,] + +# sanity check +if (nrow(merged_df3_lig) == nrow(my_df_u_lig)){ + print("PASS: verified merged_df3_lig") +}else{ + cat(paste0("FAIL: nrow mismatch for merged_df3_lig" + , "\nExpected:", nrow(my_df_u_lig) + , "\nGot:", nrow(merged_df3_lig))) +} + +#============================================================== + +################# +# OPTIONAL: write output files in one go +################# +#outvars = c(#"merged_df2", + #"merged_df2_comp", + #"merged_df2_lig", + #"merged_df2_comp_lig", + + #"meregd_df3_comp" + #"merged_df3_comp_lig", + #"merged_df3", + #"merged_df3_lig") + +#cat("Writing output files: " + #, "\nPath:", outdir) + +#for (i in outvars){ + #out_filename = paste0(i, ".csv") + #outfile = paste0(outdir, "/", out_filename) + #cat("Writing output file:" + # ,"\nFilename: ", out_filename,"\n") + #write.csv(get(i), outfile, row.names = FALSE) + #cat("Finished writing: ", outfile + # , "\nNo. of rows: ", nrow(get(i)) + # , "\nNo. of cols: ", ncol(get(i)), "\n") +#} + +# clear variables +rm(foo, bar, gene_metadata + , in_filename_params, infile_params, merging_cols + , in_filename_gene_metadata, infile_gene_metadata) + +#========================================================================== +# end of script +##========================================================================= \ No newline at end of file diff --git a/scripts/plotting/redundant/combining_two_df_FIXME.R b/scripts/plotting/redundant/combining_two_df_FIXME.R new file mode 100644 index 0000000..0d34e06 --- /dev/null +++ b/scripts/plotting/redundant/combining_two_df_FIXME.R @@ -0,0 +1,442 @@ +getwd() +setwd("~/git/LSHTM_analysis/scripts/plotting/") +getwd() + +######################################################### +# TASK: To combine struct params and meta data for plotting +# Input csv files: +# 1) _all_params.csv +# 2) _meta_data.csv + +# Output: +# 1) muts with opposite effects on stability +# 2) large combined df including NAs for AF, OR,etc +# Dim: same no. of rows as gene associated meta_data_with_AFandOR +# 3) small combined df including NAs for AF, OR, etc. +# Dim: same as mcsm data +# 4) large combined df excluding NAs +# Dim: dim(#1) - no. of NAs(AF|OR) + 1 +# 5) small combined df excluding NAs +# Dim: dim(#2) - no. of unique NAs - 1 +# This script is sourced from other .R scripts for plotting +######################################################### + +########################################################## +# Installing and loading required packages +########################################################## +source("Header_TT.R") +#require(data.table) +#require(arsenal) +#require(compare) +#library(tidyverse) + + +#%% variable assignment: input and output paths & filenames +drug = "pyrazinamide" +gene = "pncA" +gene_match = paste0(gene,"_p.") +cat(gene_match) + +#============= +# directories +#============= +datadir = paste0("~/git/Data") +indir = paste0(datadir, "/", drug, "/input") +outdir = paste0("~/git/Data", "/", drug, "/output") + +#=========== +# input +#=========== +#in_filename = "mcsm_complex1_normalised.csv" +in_filename_params = paste0(tolower(gene), "_all_params.csv") +infile_params = paste0(outdir, "/", in_filename_params) +cat(paste0("Input file 1:", infile_params) ) + +# infile 2: gene associated meta data +#in_filename_gene_metadata = paste0(tolower(gene), "_meta_data_with_AFandOR.csv") +in_filename_gene_metadata = paste0(tolower(gene), "_metadata.csv") +infile_gene_metadata = paste0(outdir, "/", in_filename_gene_metadata) +cat(paste0("Input infile 2:", infile_gene_metadata)) + +#=========== +# output +#=========== +# mutations with opposite effects +out_filename_opp_muts = paste0(tolower(gene), "_muts_opp_effects.csv") +outfile_opp_muts = paste0(outdir, "/", out_filename_opp_muts) + + +#%%=============================================================== +########################### +# Read file: struct params +########################### +cat("Reading struct params including mcsm:" + , in_filename_params) + +mcsm_data = read.csv(infile_params + #, row.names = 1 + , stringsAsFactors = F + , header = T) + +cat("Input dimensions:", dim(mcsm_data)) #416, 86 + +# clear variables +rm(in_filename_params, infile_params) + +str(mcsm_data) + +table(mcsm_data$duet_outcome); sum(table(mcsm_data$duet_outcome) ) + +# spelling Correction 1: DUET incase American spelling needed! +#mcsm_data$duet_outcome[mcsm_data$duet_outcome=="Stabilising"] <- "Stabilizing" +#mcsm_data$duet_outcome[mcsm_data$duet_outcome=="Destabilising"] <- "Destabilizing" + +# checks: should be the same as above +table(mcsm_data$duet_outcome); sum(table(mcsm_data$duet_outcome) ) +head(mcsm_data$duet_outcome); tail(mcsm_data$duet_outcome) + +# spelling Correction 2: Ligand incase American spelling needed! +table(mcsm_data$ligand_outcome); sum(table(mcsm_data$ligand_outcome) ) +#mcsm_data$ligand_outcome[mcsm_data$ligand_outcome=="Stabilising"] <- "Stabilizing" +#mcsm_data$ligand_outcome[mcsm_data$ligand_outcome=="Destabilising"] <- "Destabilizing" + +# checks: should be the same as above +table(mcsm_data$ligand_outcome); sum(table(mcsm_data$ligand_outcome) ) +head(mcsm_data$ligand_outcome); tail(mcsm_data$ligand_outcome) + +# muts with opposing effects on protomer and ligand stability +table(mcsm_data$duet_outcome != mcsm_data$ligand_outcome) +changes = mcsm_data[which(mcsm_data$duet_outcome != mcsm_data$ligand_outcome),] + +# sanity check: redundant, but uber cautious! +dl_i = which(mcsm_data$duet_outcome != mcsm_data$ligand_outcome) +ld_i = which(mcsm_data$ligand_outcome != mcsm_data$duet_outcome) + +cat("Identifying muts with opposite stability effects") +if(nrow(changes) == (table(mcsm_data$duet_outcome != mcsm_data$ligand_outcome)[[2]]) & identical(dl_i,ld_i)) { + cat("PASS: muts with opposite effects on stability and affinity correctly identified" + , "\nNo. of such muts: ", nrow(changes)) +}else { + cat("FAIL: unsuccessful in extracting muts with changed stability effects") +} + +#*************************** +# write file: changed muts +write.csv(changes, outfile_opp_muts) + +cat("Finished writing file for muts with opp effects:" + , "\nFilename: ", outfile_opp_muts + , "\nDim:", dim(changes)) + +# clear variables +rm(out_filename_opp_muts, outfile_opp_muts) +rm(changes, dl_i, ld_i) + +#*************************** +# count na in each column +na_count = sapply(mcsm_data, function(y) sum(length(which(is.na(y))))); na_count + +# sort by mutationinformation +##mcsm_data = mcsm_data[order(mcsm_data$mutationinformation),] +##head(mcsm_data$mutationinformation) + +df_ncols = ncol(mcsm_data) + +# REMOVE as this is dangerous due to dup muts +# get freq count of positions and add to the df +#setDT(mcsm_data)[, occurrence := .N, by = .(position)] + +#cat("Added 1 col: position frequency to see which posn has how many muts" +# , "\nNo. of cols now", ncol(mcsm_data) +# , "\nNo. of cols before: ", df_ncols) + +#pos_count_check = data.frame(mcsm_data$position, mcsm_data$occurrence) + +# check duplicate muts +if (length(unique(mcsm_data$mutationinformation)) == length(mcsm_data$mutationinformation)){ + cat("No duplicate mutations in mcsm data") +}else{ + dup_muts = mcsm_data[duplicated(mcsm_data$mutationinformation),] + dup_muts_nu = length(unique(dup_muts$mutationinformation)) + cat(paste0("CAUTION:", nrow(dup_muts), " Duplicate mutations identified" + , "\nOf these, no. of unique mutations are:", dup_muts_nu + , "\nExtracting df with unique mutations only")) + mcsm_data_u = mcsm_data[!duplicated(mcsm_data$mutationinformation),] +} + +if (nrow(mcsm_data_u) == length(unique(mcsm_data$mutationinformation))){ + cat("Df without duplicate mutations successfully extracted") +} else{ + cat("FAIL: could not extract clean df!") + quit() +} + +########################### +# 2: Read file: _meta data.csv +########################### +cat("Reading meta data file:", infile_gene_metadata) + +gene_metadata <- read.csv(infile_gene_metadata + , stringsAsFactors = F + , header = T) +cat("Dim:", dim(gene_metadata)) + +#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +# FIXME: remove +# counting NAs in AF, OR cols: +if (identical(sum(is.na(gene_metadata$OR)) + , sum(is.na(gene_metadata$pvalue)) + , sum(is.na(gene_metadata$AF)))){ + cat("PASS: NA count match for OR, pvalue and AF\n") + na_count = sum(is.na(gene_metadata$AF)) + cat("No. of NAs: ", sum(is.na(gene_metadata$OR))) +} else{ + cat("FAIL: NA count mismatch" + , "\nNA in OR: ", sum(is.na(gene_metadata$OR)) + , "\nNA in pvalue: ", sum(is.na(gene_metadata$pvalue)) + , "\nNA in AF:", sum(is.na(gene_metadata$AF))) +} +#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +# clear variables +rm(in_filename_gene_metadata, infile_gene_metadata) + +str(gene_metadata) + +# sort by position (same as mcsm_data) +# earlier it was mutationinformation +#head(gene_metadata$mutationinformation) +#gene_metadata = gene_metadata[order(gene_metadata$mutationinformation),] +##head(gene_metadata$mutationinformation) + +head(gene_metadata$position) +gene_metadata = gene_metadata[order(gene_metadata$position),] +head(gene_metadata$position) + +########################### +# Merge 1: two dfs with NA +# merged_df2 +########################### +head(mcsm_data$mutationinformation) +head(gene_metadata$mutationinformation) + +# Find common columns b/w two df +merging_cols = intersect(colnames(mcsm_data), colnames(gene_metadata)) + +cat(paste0("Merging dfs with NAs: big df (1-many relationship b/w id & mut)" + , "\nNo. of merging cols:", length(merging_cols) + , "\nMerging columns identified:")) +print(merging_cols) + +#============= +# merged_df2): gene_metadata + mcsm_data +#============== +merged_df2 = merge(x = gene_metadata + , y = mcsm_data + , by = merging_cols + , all.y = T) + +cat("Dim of merged_df2: ", dim(merged_df2) #4520, 11 + ) +head(merged_df2$position) + +#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +# FIXME: count how many unique muts have entries in meta data +# sanity check +cat("Checking nrows in merged_df2") +if(nrow(gene_metadata) == nrow(merged_df2)){ + cat("nrow(merged_df2) = nrow (gene associated gene_metadata)" + ,"\nExpected no. of rows: ",nrow(gene_metadata) + ,"\nGot no. of rows: ", nrow(merged_df2)) +} else{ + cat("nrow(merged_df2)!= nrow(gene associated gene_metadata)" + , "\nExpected no. of rows after merge: ", nrow(gene_metadata) + , "\nGot no. of rows: ", nrow(merged_df2) + , "\nFinding discrepancy") + merged_muts_u = unique(merged_df2$mutationinformation) + meta_muts_u = unique(gene_metadata$mutationinformation) + # find the index where it differs + unique(meta_muts_u[! meta_muts_u %in% merged_muts_u]) +} + +#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + +# sort by position +head(merged_df2$position) +merged_df2 = merged_df2[order(merged_df2$position),] +head(merged_df2$position) + +merged_df2v3 = merge(x = gene_metadata + , y = mcsm_data + , by = merging_cols + , all = T) + +merged_df2v2 = merge(x = gene_metadata + , y = mcsm_data + , by = merging_cols + , all.x = T) +#!=!=!=!=!=!=!=! +# COMMENT: used all.y since position 186 is not part of the struc, +# hence doesn"t have a mcsm value +# but 186 is associated with mutation +#!=!=!=!=!=!=!=! + +# should be False +identical(merged_df2, merged_df2v2) +table(merged_df2$position%in%merged_df2v2$position) + +rm(merged_df2v2) + +#!!!!!!!!!!! check why these differ + +######### +# merge 3b (merged_df3):remove duplicate mutation information +######### +cat("Merging dfs without NAs: small df (removing muts with no AF|OR associated)" + ,"\nCannot trust lineage info from this" + ,"\nlinking col: Mutationinforamtion" + ,"\nfilename: merged_df3") + +#==#=#=#=#=#=# +# Cannot trust lineage, country from this df as the same mutation +# can have many different lineages +# but this should be good for the numerical corr plots +#=#=#=#=#=#=#= +merged_df3 = merged_df2[!duplicated(merged_df2$mutationinformation),] +head(merged_df3$position); tail(merged_df3$position) # should be sorted + +# sanity check +cat("Checking nrows in merged_df3") +if(nrow(mcsm_data) == nrow(merged_df3)){ + cat("PASS: No. of rows match with mcsm_data" + ,"\nExpected no. of rows: ", nrow(mcsm_data) + ,"\nGot no. of rows: ", nrow(merged_df3)) +} else { + cat("FAIL: No. of rows mismatch" + , "\nNo. of rows mcsm_data: ", nrow(mcsm_data) + , "\nNo. of rows merged_df3: ", nrow(merged_df3)) +} + +# counting NAs in AF, OR cols in merged_df3 +# this is becuase mcsm has no AF, OR cols, +# so you cannot count NAs +if (identical(sum(is.na(merged_df3$OR)) + , sum(is.na(merged_df3$pvalue)) + , sum(is.na(merged_df3$AF)))){ + cat("PASS: NA count match for OR, pvalue and AF\n") + na_count_df3 = sum(is.na(merged_df3$AF)) + cat("No. of NAs: ", sum(is.na(merged_df3$OR))) +} else{ + cat("FAIL: NA count mismatch" + , "\nNA in OR: ", sum(is.na(merged_df3$OR)) + , "\nNA in pvalue: ", sum(is.na(merged_df3$pvalue)) + , "\nNA in AF:", sum(is.na(merged_df3$AF))) +} + +########################### +# 4: merging two dfs: without NA +########################### +######### +# merge 4a (merged_df2_comp): same as merge 1 but excluding NA +######### +cat("Merging dfs without any NAs: big df (1-many relationship b/w id & mut)" + ,"\nlinking col: Mutationinforamtion" + ,"\nfilename: merged_df2_comp") + +merged_df2_comp = merged_df2[!is.na(merged_df2$AF),] +#merged_df2_comp = merged_df2[!duplicated(merged_df2$mutationinformation),] + +# sanity check +cat("Checking nrows in merged_df2_comp") +if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count + 1)){ + cat("PASS: No. of rows match" + ,"\nDim of merged_df2_comp: " + ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count + 1 + , "\nNo. of rows: ", nrow(merged_df2_comp) + , "\nNo. of cols: ", ncol(merged_df2_comp)) +}else{ + cat("FAIL: No. of rows mismatch" + ,"\nExpected no. of rows: ", nrow(merged_df2) - na_count + 1 + ,"\nGot no. of rows: ", nrow(merged_df2_comp)) +} + +######### +# merge 4b (merged_df3_comp): remove duplicate mutation information +######### +merged_df3_comp = merged_df2_comp[!duplicated(merged_df2_comp$mutationinformation),] + +cat("Dim of merged_df3_comp: " + , "\nNo. of rows: ", nrow(merged_df3_comp) + , "\nNo. of cols: ", ncol(merged_df3_comp)) + +# alternate way of deriving merged_df3_comp +foo = merged_df3[!is.na(merged_df3$AF),] +# compare dfs: foo and merged_df3_com +all.equal(foo, merged_df3) + +summary(comparedf(foo, merged_df3)) + +# sanity check +cat("Checking nrows in merged_df3_comp") +if(nrow(merged_df3_comp) == nrow(merged_df3)){ + cat("NO NAs detected in merged_df3 in AF|OR cols" + ,"\nNo. of rows are identical: ", nrow(merged_df3)) +} else{ + if(nrow(merged_df3_comp) == nrow(merged_df3) - na_count_df3) { + cat("PASS: NAs detected in merged_df3 in AF|OR cols" + , "\nNo. of NAs: ", na_count_df3 + , "\nExpected no. of rows in merged_df3_comp: ", nrow(merged_df3) - na_count_df3 + , "\nGot no. of rows: ", nrow(merged_df3_comp)) + } +} + +#=============== end of combining df +#********************* +# writing 1 file in the style of a loop: merged_df3 +# print(output dir) +#i = "merged_df3" +#out_filename = paste0(i, ".csv") +#outfile = paste0(outdir, "/", out_filename) + +#cat("Writing output file: " +# ,"\nFilename: ", out_filename +# ,"\nPath: ", outdir) + +#template: write.csv(merged_df3, "merged_df3.csv") +#write.csv(get(i), outfile, row.names = FALSE) +#cat("Finished writing: ", outfile +# , "\nNo. of rows: ", nrow(get(i)) +# , "\nNo. of cols: ", ncol(get(i))) + +#%% write_output files; all 4 files: +outvars = c("merged_df2" + , "merged_df3" + , "merged_df2_comp" + , "merged_df3_comp") + +cat("Writing output files: " + , "\nPath:", outdir) + +for (i in outvars){ +# cat(i, "\n") + out_filename = paste0(i, ".csv") +# cat(out_filename, "\n") +# cat("getting value of variable: ", get(i)) + outfile = paste0(outdir, "/", out_filename) +# cat("Full output path: ", outfile, "\n") + cat("Writing output file:" + ,"\nFilename: ", out_filename,"\n") + write.csv(get(i), outfile, row.names = FALSE) + cat("Finished writing: ", outfile + , "\nNo. of rows: ", nrow(get(i)) + , "\nNo. of cols: ", ncol(get(i)), "\n") +} + +# alternate way to replace with implicit loop +# FIXME +#sapply(outvars, function(x, y) write.csv(get(outvars), paste0(outdir, "/", outvars, ".csv"))) +#************************* +# clear variables +rm(mcsm_data, gene_metadata, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, df_ncols, outdir) +rm(pos_count_check) +#============================= end of script +