added subaxis plots for PS and lig separately

This commit is contained in:
Tanushree Tunstall 2020-01-31 15:30:08 +00:00
parent 6cbef0c3d7
commit ac34de9e79
4 changed files with 601 additions and 81 deletions

View file

@ -1,38 +1,18 @@
getwd() max(my_df2$Dis_lig_Ang) #9.847
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting") min(my_df2$Dis_lig_Ang) #3.047
getwd() # count no of unique positions
source("../Header_TT.R") length(unique(my_df2$Position))#47
source("../barplot_colour_function.R") #count no of unique mutations
############################################################ length(unique(my_df2$Mutationinformation)) #110
# Output dir for plots #clear variable to avoid confusion
############################################################ rm(my_df)
out_dir = "~/git/Data/pyrazinamide/output/plots" #%%%%%%%%%%
source("subcols_axis.R") # Reassign
table(mut_pos_cols$lab_bg) #%%%%%%%%%%
#blue cornflowerblue green purple white yellow my_df = my_df2
#2 2 2 4 117 3 # Stacked Barplot with colours: Lig_outcome @ position coloured by
sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
table(mut_pos_cols$lab_bg2)
#green white
#2 128
sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
table(mut_pos_cols$lab_fg)
#black white
#124 6
sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
# very important!
my_axis_colours = mut_pos_cols$lab_fg
# now clear mut_pos_cols
rm(mut_pos_cols)
###########################
# 2: Plot: DUET scores
###########################
#==========================
# Plot 2: Barplot with scores (unordered)
# corresponds to DUET_outcome
# Stacked Barplot with colours: DUET_outcome @ position coloured by
# stability scores. This is a barplot where each bar corresponds # stability scores. This is a barplot where each bar corresponds
# to a SNP and is coloured by its corresponding DUET stability value. # to a SNP and is coloured by its corresponding PredAff stability value.
# Normalised values (range between -1 and 1 ) to aid visualisation # Normalised values (range between -1 and 1 ) to aid visualisation
# NOTE: since barplot plots discrete values, colour = score, so number of # NOTE: since barplot plots discrete values, colour = score, so number of
# colours will be equal to the no. of unique normalised scores # colours will be equal to the no. of unique normalised scores
@ -41,7 +21,7 @@ rm(mut_pos_cols)
#============================ #============================
# sanity checks # sanity checks
upos = unique(my_df$Position) upos = unique(my_df$Position)
str(my_df$DUET_outcome) str(my_df$Lig_outcome)
colnames(my_df) colnames(my_df)
#=========================== #===========================
# Data preparation for plots # Data preparation for plots
@ -49,44 +29,146 @@ colnames(my_df)
#!!!!!!!!!!!!!!!!! #!!!!!!!!!!!!!!!!!
# REASSIGNMENT # REASSIGNMENT
df <- my_df df <- my_df
#!!!!!!!!!!!!!!!!!
rm(my_df) rm(my_df)
# sanity checks # sanity checks
# should be a factor # should be a factor
is.factor(df$DUET_outcome) is.factor(df$Lig_outcome)
#TRUE table(df$Lig_outcome)
table(df$DUET_outcome) # sanity checks
#Destabilizing Stabilizing # should be a factor
#288 47 is.factor(df$Lig_outcome); as.factor(df$Lig_outcome)
# sanity checks
# should be a factor
is.factor(df$Lig_outcome); as.factor(df$Lig_outcome)
#===========================
# Data preparation for plots
#===========================
#!!!!!!!!!!!!!!!!!
# REASSIGNMENT
df <- my_df
getwd()
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
getwd()
############################################################
# 1: Installing and loading required packages and functions
############################################################
source("../Header_TT.R")
source("../barplot_colour_function.R")
############################################################
# Output dir for plots
############################################################
out_dir = "~/git/Data/pyrazinamide/output/plots"
############################################################
# 2: call script the prepares the data with columns containing
# colours for axis labels
############################################################
source("subcols_axis.R")
# this should return
#mut_pos_cols: 130, 4
#my_df: 335, 39
# clear excess variable
# "mut_pos_cols" is just for inspection in case you need to cross check
# position numbers and colours
# open file from deskptop ("sample_axis_cols") for cross checking
table(mut_pos_cols$lab_bg)
sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
table(mut_pos_cols$lab_bg2)
sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
table(mut_pos_cols$lab_fg)
sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
# very important!
my_axis_colours = mut_pos_cols$lab_fg
# now clear mut_pos_cols
rm(mut_pos_cols)
########################### !!! only for mcsm_lig
# 4: Filter/subset data
# Lig plots < 10Ang
# Filter the lig plots for Dis_to_lig < 10Ang
###########################
# check range of distances
max(my_df$Dis_lig_Ang)
min(my_df$Dis_lig_Ang)
# subset data to have only values less than 10 Ang
my_df2 = subset(my_df, my_df$Dis_lig_Ang < 10)
# sanity checks
table(my_df2$Dis_lig_Ang<10)
table(my_df2$Dis_lig_Ang>10)
max(my_df2$Dis_lig_Ang)
min(my_df2$Dis_lig_Ang)
# count no of unique positions
length(unique(my_df2$Position))
#count no of unique mutations
length(unique(my_df2$Mutationinformation))
# clear variable to avoid confusion
rm(my_df)
#%%%%%%%%%%
# Reassign to keep code below consistent
#%%%%%%%%%%
my_df = my_df2
###########################
# 2: Plot: Lig scores
###########################
#==========================
# Plot 2: Barplot with scores (unordered)
# corresponds to Lig_outcome
# Stacked Barplot with colours: Lig_outcome @ position coloured by
# stability scores. This is a barplot where each bar corresponds
# to a SNP and is coloured by its corresponding PredAff stability value.
# Normalised values (range between -1 and 1 ) to aid visualisation
# NOTE: since barplot plots discrete values, colour = score, so number of
# colours will be equal to the no. of unique normalised scores
# rather than a continuous scale
# will require generating the colour scale separately.
#============================
# sanity checks
upos = unique(my_df$Position)
str(my_df$Lig_outcome)
colnames(my_df)
#===========================
# Data preparation for plots
#===========================
#!!!!!!!!!!!!!!!!!
# REASSIGNMENT
df <- my_df
rm(my_df)
# sanity checks
# should be a factor
is.factor(df$Lig_outcome); as.factor(df$Lig_outcome)
df$Lig_outcome = as.factor(df$Lig_outcome)
is.factor(df$Lig_outcome);
table(df$Lig_outcome)
# should be -1 and 1 # should be -1 and 1
min(df$ratioDUET) min(df$ratioPredAff)
max(df$ratioDUET) max(df$ratioPredAff)
# sanity checks # sanity checks
# very important!!!! # very important!!!!
tapply(df$ratioDUET, df$DUET_outcome, min) tapply(df$ratioPredAff, df$Lig_outcome, min)
#Destabilizing Stabilizing tapply(df$ratioPredAff, df$Lig_outcome, max)
#-1.0000000 0.01065719 # sanity checks
tapply(df$ratioDUET, df$DUET_outcome, max) # very important!!!!
#Destabilizing Stabilizing tapply(df$ratioPredAff, df$Lig_outcome, min)
#-0.003875969 1.0000000 tapply(df$ratioPredAff, df$Lig_outcome, max)
# check unique values in normalised data # check unique values in normalised data
u = unique(df$ratioDUET) # 323 u = unique(df$ratioPredAff)
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Run this section if rounding is to be used # Run this section if rounding is to be used
# specify number for rounding # specify number for rounding
n = 3 n = 3
df$ratioDUETR = round(df$ratioDUET, n) # 335, 40 df$ratioPredAffR = round(df$ratioPredAff, n)
u = unique(df$ratioDUETR) # 287 u = unique(df$ratioPredAffR)
# create an extra column called group which contains the "gp name and score" # create an extra column called group which contains the "gp name and score"
# so colours can be generated for each unique values in this column # so colours can be generated for each unique values in this column
my_grp = df$ratioDUETR my_grp = df$ratioPredAffR
df$group <- paste0(df$DUET_outcome, "_", my_grp, sep = "") # 335,41 df$group <- paste0(df$Lig_outcome, "_", my_grp, sep = "")
# Call the function to create the palette based on the group defined above # Call the function to create the palette based on the group defined above
colours <- ColourPalleteMulti(df, "DUET_outcome", "my_grp") colours <- ColourPalleteMulti(df, "Lig_outcome", "my_grp")
my_title = "Protein stability (DUET)" my_title = "Protein stability (PredAff)"
library(ggplot2) library(ggplot2)
# axis label size # axis label size
my_xaxls = 13 my_xaxls = 13
my_title = "Ligand Affinity"
# axis label size
my_xaxls = 13
my_yaxls = 15 my_yaxls = 15
# axes text size # axes text size
my_xaxts = 15 my_xaxts = 15
@ -129,9 +211,9 @@ coord_cartesian(xlim = c(1, my_xlim)
geom_bar(aes(fill = group), colour = "grey") + geom_bar(aes(fill = group), colour = "grey") +
scale_fill_manual( values = colours scale_fill_manual( values = colours
, guide = 'none') + , guide = 'none') +
geom_tile(aes(,-0.8, width = 0.9, height = 0.85) geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
, fill = df$lab_bg) + , fill = df$lab_bg) +
geom_tile(aes(,-1.2, width = 0.9, height = -0.2) geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
, fill = df$lab_bg2) + , fill = df$lab_bg2) +
# Here it's important to specify that your axis goes from 1 to max number of levels # Here it's important to specify that your axis goes from 1 to max number of levels
theme( axis.text.x = element_text(size = my_xats theme( axis.text.x = element_text(size = my_xats
@ -150,6 +232,9 @@ theme( axis.text.x = element_text(size = my_xats
labs(title = my_title labs(title = my_title
, x = "Position" , x = "Position"
, y = "Frequency") , y = "Frequency")
#========================
# output plot as svg/png
#========================
class(df$lab_bg) class(df$lab_bg)
# make this a named vector # make this a named vector
# define cartesian coord # define cartesian coord
@ -160,12 +245,234 @@ my_yals = 18
# axes text size # axes text size
my_xats = 14 my_xats = 14
my_yats = 18 my_yats = 18
my_plot_name = "barplot_PS_acoloured.svg" # set output dir for plots
out_file = paste0(out_dir, "/", my_plot_name); outfile #getwd()
svg(outfile, width = 26, height = 4) #setwd("~/git/Data/pyrazinamide/output/plots")
svg(out_file, width = 26, height = 4) #getwd()
getwd()
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
getwd()
############################################################
# 1: Installing and loading required packages and functions
############################################################
source("../Header_TT.R")
source("../barplot_colour_function.R")
############################################################
# Output dir for plots
############################################################
out_dir = "~/git/Data/pyrazinamide/output/plots"
############################################################
# 2: call script the prepares the data with columns containing
# colours for axis labels
############################################################
source("subcols_axis.R")
# this should return
#mut_pos_cols: 130, 4
#my_df: 335, 39
# clear excess variable
# "mut_pos_cols" is just for inspection in case you need to cross check
# position numbers and colours
# open file from deskptop ("sample_axis_cols") for cross checking
table(mut_pos_cols$lab_bg)
sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
table(mut_pos_cols$lab_bg2)
sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
table(mut_pos_cols$lab_fg)
sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
# very important!
my_axis_colours = mut_pos_cols$lab_fg
# now clear mut_pos_cols
rm(mut_pos_cols)
########################### !!! only for mcsm_lig
# 4: Filter/subset data
# Lig plots < 10Ang
# Filter the lig plots for Dis_to_lig < 10Ang
###########################
# check range of distances
max(my_df$Dis_lig_Ang)
min(my_df$Dis_lig_Ang)
# subset data to have only values less than 10 Ang
my_df2 = subset(my_df, my_df$Dis_lig_Ang < 10)
# sanity checks
table(my_df2$Dis_lig_Ang<10)
table(my_df2$Dis_lig_Ang>10)
max(my_df2$Dis_lig_Ang)
min(my_df2$Dis_lig_Ang)
# count no of unique positions
length(unique(my_df2$Position))
#count no of unique mutations
length(unique(my_df2$Mutationinformation))
# clear variable to avoid confusion
rm(my_df)
#%%%%%%%%%%
# Reassign to keep code below consistent
#%%%%%%%%%%
my_df = my_df2
###########################
# 2: Plot: Lig scores
###########################
#==========================
# Plot 2: Barplot with scores (unordered)
# corresponds to Lig_outcome
# Stacked Barplot with colours: Lig_outcome @ position coloured by
# stability scores. This is a barplot where each bar corresponds
# to a SNP and is coloured by its corresponding PredAff stability value.
# Normalised values (range between -1 and 1 ) to aid visualisation
# NOTE: since barplot plots discrete values, colour = score, so number of
# colours will be equal to the no. of unique normalised scores
# rather than a continuous scale
# will require generating the colour scale separately.
#============================
# sanity checks
upos = unique(my_df$Position)
str(my_df$Lig_outcome)
colnames(my_df)
#===========================
# Data preparation for plots
#===========================
#!!!!!!!!!!!!!!!!!
# REASSIGNMENT
df <- my_df
#!!!!!!!!!!!!!!!!!
rm(my_df)
# sanity checks
# should be a factor
is.factor(df$Lig_outcome);
#FALSE
df$Lig_outcome = as.factor(df$Lig_outcome)
is.factor(df$Lig_outcome);
#TRUE
table(df$Lig_outcome)
# check the range
min(df$ratioPredAff)
max(df$ratioPredAff)
# sanity checks
# very important!!!!
tapply(df$ratioPredAff, df$Lig_outcome, min)
tapply(df$ratioPredAff, df$Lig_outcome, max)
# My colour FUNCTION: based on group and subgroup
# in my case;
# df = df
# group = Lig_outcome
# subgroup = normalised score i.e ratioPredAff
# Prepare data: round off ratioPredAff scores
# round off to 3 significant digits:
# 323 if no rounding is performed: used to generate the original graph
# 287 if rounded to 3 places
# FIXME: check if reducing precicion creates any ML prob
# check unique values in normalised data
u = unique(df$ratioPredAff)
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Run this section if rounding is to be used
# specify number for rounding
n = 3
df$ratioPredAffR = round(df$ratioPredAff, n)
u = unique(df$ratioPredAffR)
# create an extra column called group which contains the "gp name and score"
# so colours can be generated for each unique values in this column
my_grp = df$ratioPredAffR
df$group <- paste0(df$Lig_outcome, "_", my_grp, sep = "")
# ELSE
# uncomment the below if rounding is not required
#my_grp = df$ratioPredAff
#df$group <- paste0(df$Lig_outcome, "_", my_grp, sep = "")
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#******************
# generate plot
#******************
# Call the function to create the palette based on the group defined above
colours <- ColourPalleteMulti(df, "Lig_outcome", "my_grp")
my_title = "Ligand Affinity"
library(ggplot2)
# axis label size
my_xaxls = 13
my_yaxls = 15
# axes text size
my_xaxts = 15
my_yaxts = 15
# no ordering of x-axis according to frequency
g = ggplot(df, aes(factor(Position, ordered = T)))
g +
geom_bar(aes(fill = group), colour = "grey") +
scale_fill_manual( values = colours
, guide = 'none') +
theme( axis.text.x = element_text(size = my_xaxls
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = my_yaxls
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = my_xaxts)
, axis.title.y = element_text(size = my_yaxts ) ) +
labs(title = my_title
, x = "Position"
, y = "Frequency")
#========================
# plot with axis colours
#========================
class(df$lab_bg)
# make this a named vector
# define cartesian coord
my_xlim = length(unique(df$Position)); my_xlim
# axis label size
my_xals = 15
my_yals = 15
# axes text size
my_xats = 15
my_yats = 18
# using geom_tile # using geom_tile
g = ggplot(df, aes(factor(Position, ordered = T))) g = ggplot(df, aes(factor(Position, ordered = T)))
g +
coord_cartesian(xlim = c(1, my_xlim)
, ylim = c(0, 6)
, clip = "off") +
geom_bar(aes(fill = group), colour = "grey") +
scale_fill_manual( values = colours
, guide = 'none') +
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
, fill = df$lab_bg) +
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
, fill = df$lab_bg2) +
# Here it's important to specify that your axis goes from 1 to max number of levels
theme( axis.text.x = element_text(size = my_xats
, angle = 90
, hjust = 1
, vjust = 0.4
, colour = my_axis_colours)
, axis.text.y = element_text(size = my_yats
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = my_xals)
, axis.title.y = element_text(size = my_yals )
, axis.ticks.x = element_blank()
) +
labs(title = my_title
, x = "Position"
, y = "Frequency")
#========================
# output plot as svg/png
#========================
class(df$lab_bg)
# make this a named vector
# define cartesian coord
my_xlim = length(unique(df$Position)); my_xlim
# axis label size
my_xals = 18
my_yals = 18
# axes text size
my_xats = 14
my_yats = 18
# set output dir for plots
#getwd()
#setwd("~/git/Data/pyrazinamide/output/plots")
#getwd()
plot_name = "barplot_LIG_acoloured.svg"
my_plot_name = paste0(out_dir, "/", plot_name); my_plot_name
svg(my_plot_name, width = 26, height = 4)
g = ggplot(df, aes(factor(Position, ordered = T)))
outFile = g + outFile = g +
coord_cartesian(xlim = c(1, my_xlim) coord_cartesian(xlim = c(1, my_xlim)
, ylim = c(0, 6) , ylim = c(0, 6)
@ -178,9 +485,9 @@ scale_fill_manual( values = colours
# , fill = df$lab_bg) + # , fill = df$lab_bg) +
# geom_tile(aes(,-1, width = 0.9, height = 0.3) # geom_tile(aes(,-1, width = 0.9, height = 0.3)
# , fill = df$lab_bg2) + # , fill = df$lab_bg2) +
geom_tile(aes(,-0.8, width = 0.9, height = 0.85) geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
, fill = df$lab_bg) + , fill = df$lab_bg) +
geom_tile(aes(,-1.2, width = 0.9, height = -0.2) geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
, fill = df$lab_bg2) + , fill = df$lab_bg2) +
# Here it's important to specify that your axis goes from 1 to max number of levels # Here it's important to specify that your axis goes from 1 to max number of levels
theme( axis.text.x = element_text(size = my_xats theme( axis.text.x = element_text(size = my_xats
@ -201,3 +508,5 @@ labs(title = ""
, y = "Frequency") , y = "Frequency")
print(outFile) print(outFile)
dev.off() dev.off()
# for sanity and good practice
#rm(df)

View file

@ -196,9 +196,9 @@ g +
geom_bar(aes(fill = group), colour = "grey") + geom_bar(aes(fill = group), colour = "grey") +
scale_fill_manual( values = colours scale_fill_manual( values = colours
, guide = 'none') + , guide = 'none') +
geom_tile(aes(,-0.8, width = 0.9, height = 0.85) geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
, fill = df$lab_bg) + , fill = df$lab_bg) +
geom_tile(aes(,-1.2, width = 0.9, height = -0.2) geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
, fill = df$lab_bg2) + , fill = df$lab_bg2) +
# Here it's important to specify that your axis goes from 1 to max number of levels # Here it's important to specify that your axis goes from 1 to max number of levels
@ -261,9 +261,9 @@ outFile = g +
# , fill = df$lab_bg) + # , fill = df$lab_bg) +
# geom_tile(aes(,-1, width = 0.9, height = 0.3) # geom_tile(aes(,-1, width = 0.9, height = 0.3)
# , fill = df$lab_bg2) + # , fill = df$lab_bg2) +
geom_tile(aes(,-0.8, width = 0.9, height = 0.85) geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
, fill = df$lab_bg) + , fill = df$lab_bg) +
geom_tile(aes(,-1.2, width = 0.9, height = -0.2) geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
, fill = df$lab_bg2) + , fill = df$lab_bg2) +
# Here it's important to specify that your axis goes from 1 to max number of levels # Here it's important to specify that your axis goes from 1 to max number of levels

View file

@ -0,0 +1,208 @@
getwd()
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
getwd()
############################################################
# 1: Installing and loading required packages and functions
############################################################
#source("../Header_TT.R")
#source("../barplot_colour_function.R")
#library(tidyverse)
###########################
#2: Read file: normalised file, output of step 4 mcsm pipeline
###########################
#my_df <- read.csv("../../Data/mcsm_complex1_normalised.csv"
# , row.names = 1
# , stringsAsFactors = F
# , header = T)
# call script combining_df
source("../combining_two_df_lig.R")
#---------------------- PAY ATTENTION
# the above changes the working dir
# from Plotting to Scripts"
#---------------------- PAY ATTENTION
#==========================
# This will return:
# df with NA for pyrazinamide:
#merged_df2
#merged_df2_comp
# df without NA for pyrazinamide:
#merged_df3
#merged_df3_comp
#==========================
###########################
# Data to choose:
# We will be using the small dfs
# to generate the coloured axis
###########################
# uncomment as necessary
#!!!!!!!!!!!!!!!!!!!!!!!
# REASSIGNMENT
my_df = merged_df3
#my_df = merged_df3_comp
#!!!!!!!!!!!!!!!!!!!!!!!
# delete variables not required
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
str(my_df)
my_df$Position
c1 = my_df[my_df$Mutationinformation == "A134V",]
# order my_df by Position
my_df_o = my_df[order(my_df$Position),]
head(my_df_o$Position); tail(my_df_o$Position)
c2 = my_df_o[my_df_o$Mutationinformation == "A134V",]
# sanity check
if (sum(table(c1 == c2)) == ncol(my_df)){
print ("Sanity check passsd")
}else{
print ("Error!: Please debug your code")
}
rm(my_df, c1, c2)
# create a new df with unique position numbers and cols
Position = unique(my_df_o$Position)
Position_cols = as.data.frame(Position)
head(Position_cols) ; tail(Position_cols)
# specify active site residues and bg colour
Position = c(49, 51, 57, 71
, 8, 96, 138
, 13, 68
, 103, 137
, 133, 134) #13
lab_bg = rep(c("purple"
, "yellow"
, "cornflowerblue"
, "blue"
, "green"), times = c(4, 3, 2, 2, 2)
)
# second bg colour for active site residues
#lab_bg2 = rep(c("white"
# , "green" , "white", "green"
# , "white"
# , "white"
# , "white"), times = c(4
# , 1, 1, 1
# , 2
# , 2
# , 2)
#)
#%%%%%%%%%
# revised: leave the second box coloured as the first one incase there is no second colour
#%%%%%%%%%
lab_bg2 = rep(c("purple"
, "green", "yellow", "green"
, "cornflowerblue"
, "blue"
, "green"), times = c(4
, 1, 1, 1
, 2
, 2
, 2))
# fg colour for labels for active site residues
lab_fg = rep(c("white"
, "black"
, "black"
, "white"
, "black"), times = c(4, 3, 2, 2, 2))
#%%%%%%%%%
# revised: make the purple ones black
# fg colour for labels for active site residues
#%%%%%%%%%
#lab_fg = rep(c("black"
# , "black"
# , "black"
# , "white"
# , "black"), times = c(4, 3, 2, 2, 2))
# combined df with active sites, bg and fg colours
aa_cols_ref = data.frame(Position
, lab_bg
, lab_bg2
, lab_fg
, stringsAsFactors = F) #13, 4
str(Position_cols); class(Position_cols)
str(aa_cols_ref); class(aa_cols_ref)
# since Position is int and numeric in the two dfs resp,
# converting numeric to int for consistency
aa_cols_ref$Position = as.integer(aa_cols_ref$Position)
class(aa_cols_ref$Position)
#===========
# Merge 1: merging Positions df (Position_cols) and
# active site cols (aa_cols_ref)
# linking column: "Position"
# This is so you can have colours defined for all 130 positions
#===========
head(Position_cols$Position); head(aa_cols_ref$Position)
mut_pos_cols = merge(Position_cols, aa_cols_ref
, by = "Position"
, all.x = TRUE)
head(mut_pos_cols)
# replace NA's
# :column "lab_bg" with "white"
# : column "lab_fg" with "black"
mut_pos_cols$lab_bg[is.na(mut_pos_cols$lab_bg)] <- "white"
mut_pos_cols$lab_bg2[is.na(mut_pos_cols$lab_bg2)] <- "white"
mut_pos_cols$lab_fg[is.na(mut_pos_cols$lab_fg)] <- "black"
head(mut_pos_cols)
#===========
# Merge 2: Merge mut_pos_cols with mcsm df
# Now combined the 130 positions with aa colours with
# the mcsm_data
#===========
# dfs to merge
df0 = my_df_o
df1 = mut_pos_cols
# check the column on which merge will be performed
head(df0$Position); tail(df0$Position)
head(df1$Position); tail(df1$Position)
# should now have 3 extra columns
my_df = merge(df0, df1
, by = "Position"
, all.x = TRUE)
# sanity check
my_df[my_df$Position == "49",]
my_df[my_df$Position == "13",]
my_df$Position
# clear variables
rm(aa_cols_ref
, df0
, df1
, my_df_o
, Position_cols
, lab_bg
, lab_bg2
, lab_fg
, Position
)

View file

@ -104,32 +104,35 @@ lab_bg = rep(c("purple"
# , 2) # , 2)
#) #)
#%%%%%%%%%
# revised: leave the second box coloured as the first one incase there is no second colour # revised: leave the second box coloured as the first one incase there is no second colour
#%%%%%%%%%
lab_bg2 = rep(c("purple" lab_bg2 = rep(c("purple"
, "green" , "yellow", "green" , "green", "yellow", "green"
, "cornflowerblue" , "cornflowerblue"
, "blue" , "blue"
, "green"), times = c(4 , "green"), times = c(4
, 1, 1, 1 , 1, 1, 1
, 2 , 2
, 2 , 2
, 2) , 2))
)
# fg colour for labels for active site residues # fg colour for labels for active site residues
#lab_fg = rep(c("white" lab_fg = rep(c("white"
# , "black"
# , "black"
# , "white"
# , "black"), times = c(4, 3, 2, 2, 2))
# revised: make the purple ones black
# fg colour for labels for active site residues
lab_fg = rep(c("black"
, "black" , "black"
, "black" , "black"
, "white" , "white"
, "black"), times = c(4, 3, 2, 2, 2)) , "black"), times = c(4, 3, 2, 2, 2))
#%%%%%%%%%
# revised: make the purple ones black
# fg colour for labels for active site residues
#%%%%%%%%%
#lab_fg = rep(c("black"
# , "black"
# , "black"
# , "white"
# , "black"), times = c(4, 3, 2, 2, 2))
# combined df with active sites, bg and fg colours # combined df with active sites, bg and fg colours
aa_cols_ref = data.frame(Position aa_cols_ref = data.frame(Position