minor updates to dir.R
This commit is contained in:
parent
a1fef205da
commit
aaa24ca32d
4 changed files with 11 additions and 418 deletions
|
@ -238,9 +238,6 @@ combined_df[merging_cols_m4].apply(len) == len(combined_df)
|
|||
#deepddg_df = pd.read_csv(infile_deepddg, sep = ' ')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#%%============================================================================
|
||||
# Output columns
|
||||
|
||||
|
@ -257,384 +254,4 @@ print('\nFinished writing file:'
|
|||
, '\nNo. of cols:', combined_df.shape[1])
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#%%============================================================================
|
||||
# OR merges: TEDIOUSSSS!!!!
|
||||
#[ DELETE ]
|
||||
del(mcsm_df, foldx_df, mcsm_foldx_dfs, dssp_kd_dfs, dssp_kd_rd_dfs,rd_df, kd_df, infile_mcsm, infile_foldx, infile_dssp, infile_kd)
|
||||
del(merging_cols_m1, merging_cols_m2, merging_cols_m3, merging_cols_m4)
|
||||
del(in_filename_dssp, in_filename_foldx, in_filename_kd, in_filename_mcsm, in_filename_rd)
|
||||
#%%
|
||||
print('==================================='
|
||||
, '\nFifth merge: afor_df + afor_kin_df'
|
||||
, '\n===================================')
|
||||
|
||||
# OR combining
|
||||
afor_df = pd.read_csv(infile_afor, sep = ',')
|
||||
#afor_df.columns = afor_df.columns.str.lower()
|
||||
|
||||
afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',')
|
||||
afor_kin_df.columns = afor_kin_df.columns.str.lower()
|
||||
|
||||
merging_cols_m5 = detect_common_cols(afor_df, afor_kin_df)
|
||||
|
||||
print('Dim of afor_df:', afor_df.shape
|
||||
, '\nDim of afor_kin_df:', afor_kin_df.shape)
|
||||
|
||||
# finding if ALL afor_kin_df muts are present in afor_df
|
||||
# i.e all kinship muts should be PRESENT in mycalcs_present
|
||||
if len(afor_kin_df[afor_kin_df['mutation'].isin(afor_df['mutation'])]) == afor_kin_df.shape[0]:
|
||||
print('PASS: ALL', len(afor_kin_df), 'or_kinship muts are present in my or list')
|
||||
else:
|
||||
nf_muts = len(afor_kin_df[~afor_kin_df['mutation'].isin(afor_df['mutation'])])
|
||||
nf_muts_df = afor_kin_df[~afor_kin_df['mutation'].isin(afor_df['mutation'])]
|
||||
print('FAIL:', nf_muts, 'muts present in afor_kin_df NOT present in my or list'
|
||||
, '\nsee "nf_muts_df" created containing not found(nf) muts')
|
||||
sys.exit()
|
||||
|
||||
|
||||
# Now checking how many afor_df muts are NOT present in afor_kin_df
|
||||
common_muts = len(afor_df[afor_df['mutation'].isin(afor_kin_df['mutation'])])
|
||||
extra_muts_myor = afor_kin_df.shape[0] - common_muts
|
||||
|
||||
print('=========================================='
|
||||
, '\nmy or calcs has', common_muts, 'present in af_or_kin_df'
|
||||
, '\n==========================================')
|
||||
|
||||
print('Expected cals for merging with outer_join...')
|
||||
|
||||
expected_rows = afor_df.shape[0] + extra_muts_myor
|
||||
expected_cols = afor_df.shape[1] + afor_kin_df.shape[1] - len(merging_cols_m5)
|
||||
|
||||
|
||||
afor_df['mutation']
|
||||
afor_kin_df['mutation']
|
||||
|
||||
ors_df = pd.merge(afor_df, afor_kin_df, on = merging_cols_m5, how = o_join)
|
||||
|
||||
if ors_df.shape[0] == expected_rows and ors_df.shape[1] == expected_cols:
|
||||
print('PASS but with duplicate muts: OR dfs successfully combined! PHEWWWW!'
|
||||
, '\nDuplicate muts present but with different \'ref\' and \'alt\' alleles')
|
||||
else:
|
||||
print('FAIL: could not combine OR dfs'
|
||||
, '\nCheck expected rows and cols calculation and join type')
|
||||
|
||||
print('Dim of merged ors_df:', ors_df.shape)
|
||||
|
||||
ors_df[merging_cols_m5].apply(len)
|
||||
ors_df[merging_cols_m5].apply(len) == len(ors_df)
|
||||
|
||||
#%%============================================================================
|
||||
# formatting ors_df
|
||||
ors_df.columns
|
||||
|
||||
# Dropping unncessary columns: already removed in ealier preprocessing
|
||||
cols_to_drop = ['n_miss']
|
||||
print('Dropping', len(cols_to_drop), 'columns:\n'
|
||||
, cols_to_drop)
|
||||
ors_df.drop(cols_to_drop, axis = 1, inplace = True)
|
||||
|
||||
print('Reordering', ors_df.shape[1], 'columns'
|
||||
, '\n===============================================')
|
||||
cols = ors_df.columns
|
||||
|
||||
column_order = ['mutation'
|
||||
, 'mutationinformation'
|
||||
, 'wild_type'
|
||||
, 'position'
|
||||
, 'mutant_type'
|
||||
, 'ref_allele'
|
||||
, 'alt_allele'
|
||||
, 'mut_info_f1'
|
||||
, 'mut_info_f2'
|
||||
, 'mut_type'
|
||||
, 'gene_id'
|
||||
, 'gene_name'
|
||||
, 'chromosome_number'
|
||||
, 'af'
|
||||
, 'af_kin'
|
||||
, 'est_chisq'
|
||||
, 'or_mychisq'
|
||||
, 'or_fisher'
|
||||
, 'or_logistic'
|
||||
, 'or_kin'
|
||||
, 'pval_chisq'
|
||||
, 'pval_fisher'
|
||||
, 'pval_logistic'
|
||||
, 'pwald_kin'
|
||||
, 'ci_low_fisher'
|
||||
, 'ci_hi_fisher'
|
||||
, 'ci_low_logistic'
|
||||
, 'ci_hi_logistic'
|
||||
, 'beta_logistic'
|
||||
, 'beta_kin'
|
||||
, 'se_logistic'
|
||||
, 'se_kin'
|
||||
, 'zval_logistic'
|
||||
, 'logl_h1_kin'
|
||||
, 'l_remle_kin']
|
||||
|
||||
if ( (len(column_order) == ors_df.shape[1]) and (DataFrame(column_order).isin(ors_df.columns).all().all())):
|
||||
print('PASS: Column order generated for all:', len(column_order), 'columns'
|
||||
, '\nColumn names match, safe to reorder columns'
|
||||
, '\nApplying column order to df...' )
|
||||
ors_df_ordered = ors_df[column_order]
|
||||
else:
|
||||
print('FAIL: Mismatch in no. of cols to reorder'
|
||||
, '\nNo. of cols in df to reorder:', ors_df.shape[1]
|
||||
, '\nNo. of cols order generated for:', len(column_order))
|
||||
sys.exit()
|
||||
|
||||
print('\nResult of Sixth merge:', ors_df_ordered.shape
|
||||
, '\n===================================================================')
|
||||
#%%
|
||||
ors_df_ordered.shape
|
||||
check = ors_df_ordered[['mutationinformation','mutation', 'wild_type', 'position', 'mutant_type']]
|
||||
|
||||
# populating 'nan' info
|
||||
lookup_dict = dict()
|
||||
for k, v in low_3letter_dict.items():
|
||||
lookup_dict[k] = v['one_letter_code']
|
||||
#print(lookup_dict)
|
||||
|
||||
wt = ors_df_ordered['mutation'].str.extract(wt_regex).squeeze()
|
||||
#print(wt)
|
||||
ors_df_ordered['wild_type'] = wt.map(lookup_dict)
|
||||
|
||||
ors_df_ordered['position'] = ors_df_ordered['mutation'].str.extract(pos_regex)
|
||||
|
||||
mt = ors_df_ordered['mutation'].str.extract(mut_regex).squeeze()
|
||||
ors_df_ordered['mutant_type'] = mt.map(lookup_dict)
|
||||
|
||||
ors_df_ordered['mutationinformation'] = ors_df_ordered['wild_type'] + ors_df_ordered.position.map(str) + ors_df_ordered['mutant_type']
|
||||
check = ors_df_ordered[['mutationinformation','mutation', 'wild_type', 'position', 'mutant_type']]
|
||||
|
||||
# populate mut_info_f1
|
||||
ors_df_ordered['mut_info_f1'].isna().sum()
|
||||
ors_df_ordered['mut_info_f1'] = ors_df_ordered['position'].astype(str) + ors_df_ordered['wild_type'] + '>' + ors_df_ordered['position'].astype(str) + ors_df_ordered['mutant_type']
|
||||
ors_df_ordered['mut_info_f1'].isna().sum()
|
||||
|
||||
# populate mut_info_f2
|
||||
ors_df_ordered['mut_info_f2'] = ors_df_ordered['mutation'].str.replace(gene_match.lower(), 'p.', regex = True)
|
||||
|
||||
# populate mut_type
|
||||
ors_df_ordered['mut_type'].isna().sum()
|
||||
#mut_type_word = ors_df_ordered['mut_type'].value_counts()
|
||||
mut_type_word = 'missense' # FIXME, should be derived
|
||||
ors_df_ordered['mut_type'].fillna(mut_type_word, inplace = True)
|
||||
ors_df_ordered['mut_type'].isna().sum()
|
||||
|
||||
# populate gene_id
|
||||
ors_df_ordered['gene_id'].isna().sum()
|
||||
#gene_id_word = ors_df_ordered['gene_id'].value_counts()
|
||||
gene_id_word = 'Rv2043c' # FIXME, should be derived
|
||||
ors_df_ordered['gene_id'].fillna(gene_id_word, inplace = True)
|
||||
ors_df_ordered['gene_id'].isna().sum()
|
||||
|
||||
# populate gene_name
|
||||
ors_df_ordered['gene_name'].isna().sum()
|
||||
ors_df_ordered['gene_name'].value_counts()
|
||||
ors_df_ordered['gene_name'].fillna(gene, inplace = True)
|
||||
ors_df_ordered['gene_name'].isna().sum()
|
||||
|
||||
# check numbers
|
||||
ors_df_ordered['or_kin'].isna().sum()
|
||||
# should be 0
|
||||
ors_df_ordered['or_mychisq'].isna().sum()
|
||||
|
||||
#%%============================================================================
|
||||
print('==================================='
|
||||
, '\nSixth merge: Fourth + Fifth merge'
|
||||
, '\ncombined_df + ors_df_ordered'
|
||||
, '\n===================================')
|
||||
|
||||
#combined_df_all = combine_dfs_with_checks(combined_df, ors_df_ordered, my_join = i_join)
|
||||
merging_cols_m6 = detect_common_cols(combined_df, ors_df_ordered)
|
||||
|
||||
# dtype problems
|
||||
if len(merging_cols_m6) > 1 and 'position'in merging_cols_m6:
|
||||
print('Removing \'position\' from merging_cols_m6 to make dtypes consistent'
|
||||
, '\norig length of merging_cols_m6:', len(merging_cols_m6))
|
||||
merging_cols_m6.remove('position')
|
||||
print('\nlength after removing:', len(merging_cols_m6))
|
||||
|
||||
print('Dim of df1:', combined_df.shape
|
||||
, '\nDim of df2:', ors_df_ordered.shape
|
||||
, '\nNo. of merging_cols:', len(merging_cols_m6))
|
||||
|
||||
print('Checking mutations in the two dfs:'
|
||||
, '\nmuts in df1 present in df2:'
|
||||
, combined_df['mutationinformation'].isin(ors_df_ordered['mutationinformation']).sum()
|
||||
, '\nmuts in df2 present in df1:'
|
||||
, ors_df_ordered['mutationinformation'].isin(combined_df['mutationinformation']).sum())
|
||||
|
||||
#----------
|
||||
# merge 6
|
||||
#----------
|
||||
combined_df_all = pd.merge(combined_df, ors_df_ordered, on = merging_cols_m6, how = o_join)
|
||||
combined_df_all.shape
|
||||
|
||||
# sanity check for merge 6
|
||||
outdf_expected_rows = len(combined_df) + extra_muts_myor
|
||||
unique_muts = len(combined_df)
|
||||
outdf_expected_cols = len(combined_df.columns) + len(ors_df_ordered.columns) - len(merging_cols_m6)
|
||||
|
||||
if combined_df_all.shape[0] == outdf_expected_rows and combined_df_all.shape[1] == outdf_expected_cols and combined_df_all['mutationinformation'].nunique() == unique_muts:
|
||||
print('PASS: Df dimension match'
|
||||
, '\ncombined_df_all with join type:', o_join
|
||||
, '\n', combined_df_all.shape
|
||||
, '\n===============================================================')
|
||||
else:
|
||||
print('FAIL: Df dimension mismatch'
|
||||
, 'Cannot generate expected dim. See details of merge performed'
|
||||
, '\ndf1 dim:', combined_df.shape
|
||||
, '\ndf2 dim:', ors_df_ordered.shape
|
||||
, '\nGot:', combined_df_all.shape
|
||||
, '\nmuts in df1 but NOT in df2:'
|
||||
, combined_df['mutationinformation'].isin(ors_df_ordered['mutationinformation']).sum()
|
||||
, '\nmuts in df2 but NOT in df1:'
|
||||
, ors_df['mutationinformation'].isin(combined_df['mutationinformation']).sum())
|
||||
sys.exit()
|
||||
|
||||
# drop extra cols
|
||||
all_cols = combined_df_all.columns
|
||||
|
||||
#pos_cols_check = combined_df_all[['position_x','position_y']]
|
||||
c = combined_df_all[['position_x','position_y']].isna().sum()
|
||||
pos_col_to_drop = c.index[c>0].to_list()
|
||||
cols_to_drop = pos_col_to_drop + ['wild_type_kd']
|
||||
|
||||
print('Dropping', len(cols_to_drop), 'columns:\n', cols_to_drop)
|
||||
combined_df_all.drop(cols_to_drop, axis = 1, inplace = True)
|
||||
|
||||
# rename position_x to position
|
||||
pos_col_to_rename = c.index[c==0].to_list()
|
||||
combined_df_all.shape
|
||||
combined_df_all.rename(columns = { pos_col_to_rename[0]: 'position'}, inplace = True)
|
||||
combined_df_all.shape
|
||||
|
||||
all_cols = combined_df_all.columns
|
||||
|
||||
#%% reorder cols to for convenience
|
||||
first_cols = ['mutationinformation','mutation', 'wild_type', 'position', 'mutant_type']
|
||||
last_cols = [col for col in combined_df_all.columns if col not in first_cols]
|
||||
|
||||
combined_df_all = combined_df_all[first_cols+last_cols]
|
||||
|
||||
#%% IMPORTANT: check if mutation related info is all populated after this merge
|
||||
# select string colnames to ensure no NA exist there
|
||||
string_cols = combined_df_all.columns[combined_df_all.applymap(lambda x: isinstance(x, str)).all(0)]
|
||||
|
||||
if (combined_df_all[string_cols].isna().sum(axis = 0)== 0).all():
|
||||
print('PASS: All string cols are populated with no NAs')
|
||||
else:
|
||||
print('FAIL: NAs detected in string cols')
|
||||
print(combined_df_all[string_cols].isna().sum(axis = 0))
|
||||
sys.exit()
|
||||
|
||||
# relevant mut cols
|
||||
check_mut_cols = merging_cols_m5 + merging_cols_m6
|
||||
|
||||
count_na_mut_cols = combined_df_all[check_mut_cols].isna().sum().reset_index().rename(columns = {'index': 'col_name', 0: 'na_count'})
|
||||
print(check_mut_cols)
|
||||
|
||||
c2 = combined_df_all[check_mut_cols].isna().sum()
|
||||
missing_info_cols = c2.index[c2>0].to_list()
|
||||
|
||||
if c2.sum()>0:
|
||||
#na_muts_n = combined_df_all['mutation'].isna().sum()
|
||||
na_muts_n = combined_df_all[missing_info_cols].isna().sum()
|
||||
print(na_muts_n.values[0], 'mutations have missing \'mutation\' info.'
|
||||
, '\nFetching these from reference dict...')
|
||||
else:
|
||||
print('No missing \'mutation\' has been detected!')
|
||||
|
||||
lookup_dict = dict()
|
||||
for k, v in oneletter_aa_dict.items():
|
||||
lookup_dict[k] = v['three_letter_code_lower']
|
||||
print(lookup_dict)
|
||||
wt_3let = combined_df_all['wild_type'].map(lookup_dict)
|
||||
#print(wt_3let)
|
||||
pos = combined_df_all['position'].astype(str)
|
||||
#print(pos)
|
||||
mt_3let = combined_df_all['mutant_type'].map(lookup_dict)
|
||||
#print(mt_3let)
|
||||
# override the 'mutation' column
|
||||
combined_df_all['mutation'] = 'pnca_p.' + wt_3let + pos + mt_3let
|
||||
print(combined_df_all['mutation'])
|
||||
|
||||
# check again
|
||||
if combined_df_all[missing_info_cols].isna().sum().all() == 0:
|
||||
print('PASS: No mutations have missing \'mutation\' info.')
|
||||
else:
|
||||
print('FAIL:', combined_df_all[missing_info_cols].isna().sum().values[0]
|
||||
, '\nmutations have missing info STILL...')
|
||||
sys.exit()
|
||||
|
||||
#%% check
|
||||
foo = combined_df_all.drop_duplicates('mutationinformation')
|
||||
foo2 = combined_df_all.drop_duplicates('mutation')
|
||||
if foo.equals(foo2):
|
||||
print('PASS: Dropping mutation or mutatationinformation has the same effect\n')
|
||||
else:
|
||||
print('FAIL: Still problems in merged data')
|
||||
sys.exit()
|
||||
|
||||
#%%============================================================================
|
||||
output_cols = combined_df_all.columns
|
||||
|
||||
#%% IMPORTANT result info
|
||||
if combined_df_all['or_mychisq'].isna().sum() == len(combined_df) - len(afor_df):
|
||||
print('PASS: No. of NA in or_mychisq matches expected length'
|
||||
, '\nNo. of with NA in or_mychisq:', combined_df_all['or_mychisq'].isna().sum()
|
||||
, '\nNo. of NA in or_kin:', combined_df_all['or_kin'].isna().sum())
|
||||
else:
|
||||
print('FAIL: No. of NA in or_mychisq does not match expected length')
|
||||
|
||||
|
||||
if combined_df_all.shape[0] == outdf_expected_rows:
|
||||
print('\nINFORMARIONAL ONLY: combined_df_all has duplicate muts present but with unique ref and alt allele'
|
||||
, '\n=============================================================')
|
||||
else:
|
||||
print('combined_df_all has no duplicate muts present'
|
||||
,'\n===============================================================')
|
||||
|
||||
print('\nDim of combined_data:', combined_df_all.shape
|
||||
, '\nNo. of unique mutations:', combined_df_all['mutationinformation'].nunique())
|
||||
|
||||
|
||||
#%%============================================================================
|
||||
# write csv
|
||||
print('Writing file: combined output of all params needed for plotting and ML')
|
||||
combined_df_all.to_csv(outfile_comb, index = False)
|
||||
print('\nFinished writing file:'
|
||||
, '\nNo. of rows:', combined_df_all.shape[0]
|
||||
, '\nNo. of cols:', combined_df_all.shape[1])
|
||||
#=======================================================================
|
||||
#%% incase you FIX the the function: combine_dfs_with_checks
|
||||
#def main():
|
||||
|
||||
# print('Reading input files:')
|
||||
#mcsm_df = pd.read_csv(infile_mcsm, sep = ',')
|
||||
#mcsm_df.columns = mcsm_df.columns.str.lower()
|
||||
|
||||
#foldx_df = pd.read_csv(infile_foldx , sep = ',')
|
||||
|
||||
#dssp_df = pd.read_csv(infile_dssp, sep = ',')
|
||||
#dssp_df.columns = dssp_df.columns.str.lower()
|
||||
|
||||
#kd_df = pd.read_csv(infile_kd, sep = ',')
|
||||
#kd_df.columns = kd_df.columns.str.lower()
|
||||
|
||||
#rd_df = pd.read_csv(infile_kd, sep = ',')
|
||||
|
||||
|
||||
|
||||
#if __name__ == '__main__':
|
||||
# main()
|
||||
#=======================================================================
|
||||
#%% end of script
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue