combined and output all ors

This commit is contained in:
Tanushree Tunstall 2020-06-23 17:34:54 +01:00
parent d8b272b0ae
commit a9498f8e08
2 changed files with 185 additions and 144 deletions

View file

@ -14,7 +14,7 @@ Created on Wed Jun 10 11:13:49 2020
#%% specify dirs
import os, sys
import pandas as pd
#import numpy as np
import numpy as np
import re
import argparse
@ -26,8 +26,8 @@ from find_missense import find_missense
#%% command line args
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = None)
arg_parser.add_argument('-g', '--gene', help = 'gene name (case sensitive)', default = None) # case sensitive
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = 'pyrazinamide')
arg_parser.add_argument('-g', '--gene', help = 'gene name (case sensitive)', default = 'pncA') # case sensitive
arg_parser.add_argument('-s', '--start_coord', help = 'start of coding region (cds) of gene', default = 2288681) # pnca cds
arg_parser.add_argument('-e', '--end_coord', help = 'end of coding region (cds) of gene', default = 2289241) # pnca cds
@ -37,6 +37,8 @@ args = arg_parser.parse_args()
#%% variables
#gene = 'pncA'
#drug = 'pyrazinamide'
#start_cds = 2288681
#end_cds = 2289241
# cmd variables
gene = args.gene
@ -94,7 +96,7 @@ or_df.columns
info_df2 = pd.read_csv(gene_info, sep = '\t', header = 0) #303, 10
mis_mut_cover = (info_df2['chromosome_number'].nunique()/info_df2['chromosome_number'].count()) * 100
print('*****RESULT*****'
, '\nPercentage of missense mut in pncA:', mis_mut_cover
, '\nPercentage of MISsense mut in pncA:', mis_mut_cover
, '\n*****RESULT*****') #65.7%
# large file
@ -117,8 +119,6 @@ genomic_pos_min = info_df['chromosome_number'].min()
genomic_pos_max = info_df['chromosome_number'].max()
# genomic coord for pnca coding region
#start_cds = 2288681
#end_cds = 2289241
cds_len = (end_cds-start_cds) + 1
pred_prot_len = (cds_len/3) - 1
@ -134,6 +134,7 @@ if genomic_pos_min <= start_cds and genomic_pos_max >= end_cds:
print ('PASS: coding region for gene included in snp_info.txt')
else:
print('FAIL: coding region for gene not included in info file snp_info.txt')
sys.exit('ERROR: coding region of gene not included in the info file')
#%% Extracting ref allele and alt allele as single letters
# info_df has some of these params as more than a single letter, which means that
@ -162,7 +163,7 @@ del(orig_len, ncols_add)
# check dtypes
or_df.dtypes
info_df.dtypes
or_df.info()
#or_df.info()
# pandas documentation where it mentions: "Pandas uses the object dtype for storing strings"
# check how many unique chr_num in info_df are in or_df
@ -175,23 +176,22 @@ or_df['chromosome_number'].isin(genomic_pos_df['chr_pos']).sum() #182
if or_df['chromosome_number'].isin(genomic_pos_df['chr_pos']).sum() == len(or_df):
print('PASS: all genomic locs in or_df have meta datain info.txt')
else:
print('FAIL: some genomic locs or_df chr number DO NOT have meta data in snp_info.txt')
sys.exit('FAIL: some genomic locs or_df chr number DO NOT have meta data in snp_info.txt')
#%% Perform merge
#join_type = 'inner'
#join_type = 'outer'
join_type = 'left'
#join_type = 'right'
#my_join = 'inner'
#my_join = 'outer'
my_join = 'left'
#my_join = 'right'
#dfm1 = pd.merge(or_df, info_df, on ='chromosome_number', how = join_type, indicator = True) # not unique!
dfm1 = pd.merge(or_df, info_df, on = ['chromosome_number', 'ref_allele', 'alt_allele'], how = join_type, indicator = True)
#dfm1 = pd.merge(or_df, info_df, on ='chromosome_number', how = my_join, indicator = True) # not unique!
dfm1 = pd.merge(or_df, info_df, on = ['chromosome_number', 'ref_allele', 'alt_allele'], how = my_join, indicator = True)
dfm1['_merge'].value_counts()
# count no. of missense mutations ONLY
dfm1.snp_info.str.count(r'(missense.*)').sum()
dfm2 = pd.merge(or_df, info_df2, on = ['chromosome_number', 'ref_allele', 'alt_allele'], how = join_type, indicator = True)
dfm2 = pd.merge(or_df, info_df2, on = ['chromosome_number', 'ref_allele', 'alt_allele'], how = my_join, indicator = True)
dfm2['_merge'].value_counts()
# count no. of nan
@ -241,12 +241,90 @@ else:
, '\nGot no. of cols:', len(dfm2_mis.columns))
sys.exit()
#%% formatting data for output
print('no of cols preformatting data:', len(dfm2_mis.columns))
#1) Add column: OR for kinship calculated from beta coeff
print('converting beta coeff to OR by exponent function\n:'
, dfm2_mis['beta'].head())
dfm2_mis['or_kin'] = np.exp(dfm2_mis['beta'])
print(dfm2_mis['or_kin'].head())
#2) rename af column
dfm2_mis.rename(columns = {'af': 'af_kin'
, 'beta': 'beta_kin'
, 'p_wald': 'pwald_kin'
, 'se': 'se_kin', 'logl_H1': 'logl_H1_kin'
, 'l_remle': 'l_remle_kin'}, inplace = True)
#3) drop some not required cols (including duplicate if you want)
#3a) drop duplicate columns
dfm2_mis2 = dfm2_mis.T.drop_duplicates().T #changes dtypes in cols, so not used
dup_cols = set(dfm2_mis.columns).difference(dfm2_mis2.columns)
print('Duplicate columns identified:', dup_cols)
dup_cols = {'alt_allele0', 'ps'} # didn't want to remove tot_diff
print('removing duplicate columns: kept one of the dup_cols i.e tot_diff')
dfm2_mis.drop(list(dup_cols), axis = 1, inplace = True)
print(dfm2_mis.columns)
#3b) other not useful columns
dfm2_mis.drop(['chromosome_text', 'chr', 'symbol', '_merge', ], axis = 1, inplace = True)
dfm2_mis.rename(columns = {'ref_allele1': 'reference_allele'}, inplace = True)
print(dfm2_mis.columns)
#4) reorder columns
orkin_linked = dfm2_mis[['mutationinformation',
'wild_type',
'position',
'mutant_type',
'chr_num_allele',
'ref_allele',
'alt_allele',
'mut_info',
'mut_type',
'gene_id',
'gene_number',
'mut_region',
'reference_allele',
'alternate_allele',
'chromosome_number',
#'afs
'af_kin',
'or_kin',
# 'ors_logistic',
# 'ors_chi_cus',
# 'ors_fisher',
'pwald_kin',
# 'pvals_logistic',
# 'pvals_fisher',
# 'ci_lb_fisher',
# 'ci_ub_fisher' ,
'beta_kin',
'se_kin',
'logl_H1_kin',
'l_remle_kin',
# 'stat_chi',
# 'pvals_chi',
'n_diff',
'tot_diff',
'n_miss']]
# sanity check after reassigning columns
if orkin_linked.shape == dfm2_mis.shape and set(orkin_linked.columns) == set(dfm2_mis.columns):
print('PASS: Successfully formatted df with rearranged columns')
else:
sys.exit('FAIL: something went wrong when rearranging columns!')
#%% write file
print('Writing output file:\n', outfile_or_kin
print('\n====================================================================='
, '\nWriting output file:\n', outfile_or_kin
, '\nNo.of rows:', len(dfm2_mis)
, '\nNo. of cols:', len(dfm2_mis.columns))
dfm2_mis.to_csv(outfile_or_kin, index = False)
orkin_linked.to_csv(outfile_or_kin, index = False)
#%% diff b/w allele0 and 1: or_df
#https://stackoverflow.com/questions/40348541/pandas-diff-with-string