added prediction.R to do logistic regression

This commit is contained in:
Tanushree Tunstall 2020-09-30 10:04:49 +01:00
parent d2093e7a4c
commit a77b472dfa

255
scripts/prediction.R Normal file
View file

@ -0,0 +1,255 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: prediction
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts")
getwd()
source("combining_dfs_plotting.R")
#source("plotting/corr_data.R")
#=======
# output
#=======
####################################################################
# end of loading libraries and functions
####################################################################
#%%%%%%%%%%%%%%%%%%%%%%%%%
table(merged_df2$mutation_info)
merged_df2$mutation_info_labels = ifelse(merged_df2$mutation_info == dr_muts_col, 1, 0)
table(merged_df2$mutation_info_labels)
table(merged_df3$mutation_info)
merged_df3$mutation_info_labels = ifelse(merged_df3$mutation_info == dr_muts_col, 1, 0)
table(merged_df3$mutation_info_labels)
# lig
table(merged_df3$mutation_info)
merged_df3$mutation_info_labels = ifelse(merged_df3$mutation_info == dr_muts_col, 1, 0)
table(merged_df3$mutation_info_labels)
table(merged_df3$mutation_info)
merged_df3$mutation_info_labels = ifelse(merged_df3$mutation_info == dr_muts_col, 1, 0)
table(merged_df3$mutation_info_labels)
#%%%%%%%%%%%%%%%%%%%%%%%%%
###############################################################################
model_ind = glm(mutation_info_labels ~ or_mychisq
, data = merged_df2
, family = "binomial")
summary(model_ind)
nobs(model_ind)
#=============
# try loop
#=============
my_ivs = c("or_mychisq", "or_kin", "pval_fisher", "af", "duet_stability_change", "duet_scaled")
for( i in my_ivs){
cat ("===============================\n")
cat(i)
cat ("\n===============================\n")
print(summary(glm(mutation_info_labels ~ eval(parse(text=i))
, data = merged_df2
, family = "binomial")))
}
###############################################################################
model1 = glm(mutation_info_labels ~ or_mychisq
, data = merged_df2
, family = "binomial"); summary(model1)
model2 = glm(mutation_info_labels ~ or_kin
, data = merged_df2
, family = "binomial"); summary(model2)
model3 = glm(mutation_info_labels ~ pval_fisher
, data = merged_df2
, family = "binomial"); summary(model3)
model4 = glm(mutation_info_labels ~ af
, data = merged_df2
, family = "binomial"); summary(model4)
model5 = glm(mutation_info_labels ~ duet_stability_change
, data = merged_df2
, family = "binomial"); summary(model5)
model6 = glm(mutation_info_labels ~ duet_scaled
, data = merged_df2
, family = "binomial"); summary(model6)
###############################################################################
#========================================
# loop and output in df: individually
#========================================
my_ivs = c("or_mychisq", "or_kin", "pval_fisher", "af"
, "rsa"
, "rd_values"
, "kd_values"
, "duet_stability_change"
, "duet_scaled"
, "duet_outcome"
, "ddg"
, "foldx_scaled"
, "foldx_outcome")
ps_logistic_df2 = data.frame()
for( i in my_ivs){
print(i)
df = data.frame(var_name = NA
, number_samples = NA
, beta = NA
, odds_ratio = NA
, pvalue = NA
, se = NA
, zvalue = NA
, ci_lower = NA
, ci_upper = NA)
model = glm(mutation_info_labels ~ eval(parse(text=i))
, data = merged_df2
, family = "binomial")
var_name = i
number_samples = nobs(model)
beta_logistic = summary(model)$coefficients[2,1]; beta_logistic
or_logistic = exp(summary(model)$coefficients[2,1])
pval_logistic = summary(model)$coefficients[2,4]
se_logistic = summary(model)$coefficients[2,2]
zval_logistic = summary(model)$coefficients[2,3]
ci_mod = exp(confint(model))[2,]
ci_lower_logistic = ci_mod[["2.5 %"]]
ci_upper_logistic = ci_mod[["97.5 %"]]
print(c(var_name, beta_logistic, or_logistic, pval_logistic, se_logistic, zval_logistic, ci_mod))
df$var_name = var_name
df$number_samples = number_samples
df$beta = beta_logistic
df$odds_ratio = or_logistic
df$pvalue = pval_logistic
df$se = se_logistic
df$zvalue = zval_logistic
df$ci_lower = ci_lower_logistic
df$ci_upper = ci_upper_logistic
print(df)
ps_logistic_df2 = rbind(ps_logistic_df2, df)
}
#--------------------
# formatting df
#--------------------
ps_logistic_df2$data_source = "df2"
# adding pvalue_signif
ps_logistic_df2$pvalue_signif = ps_logistic_df2$pvalue
str(ps_logistic_df2$pvalue_signif)
ps_logistic_df2 = dplyr::mutate(ps_logistic_df2
, pvalue_signif = case_when(pvalue_signif == 0.05 ~ "."
, pvalue_signif <=0.0001 ~ '****'
, pvalue_signif <=0.001 ~ '***'
, pvalue_signif <=0.01 ~ '**'
, pvalue_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
###############################################################################
#========================================
# loop and output in df: adjusted
#========================================
my_ivs = c("or_mychisq"
, "rsa", "rd_values", "kd_values"
, "duet_stability_change", "duet_scaled", "duet_outcome"
, "ddg", "foldx_scaled", "foldx_outcome")
model_adjusted = glm(mutation_info_labels ~ or_mychisq + rsa + rd_values + kd_values +
duet_stability_change + duet_scaled + duet_outcome + ddg + foldx_scaled + foldx_outcome
, data = merged_df2
, family = "binomial")
var_names = model_adjusted$terms
number_samples = nobs(model_adjusted)
summary(model_adjusted)
ci_mod = exp(confint(model_adjusted))
my_ivs_adjusted = names(model_adjusted$coefficients)
ps_logistic_adjusted_df2 = data.frame(var_name = NA
, number_samples = NA
, beta = NA
, odds_ratio = NA
, pvalue = NA
, se = NA
, zvalue = NA
, ci_lower = NA
, ci_upper = NA)
for (i in my_ivs_adjusted){
print(i)
ps_logistic_adjusted_df2$var_name = i
ps_logistic_adjusted_df2$number_samples = number_samples
ps_logistic_adjusted_df2$beta = model_adjusted$coefficients[[i]]
ps_logistic_adjusted_df2$odds_ratio = exp(model_adjusted$coefficients[[i]])
ps_logistic_adjusted_df2$pvalue =
ps_logistic_adjusted_df2$se =
ps_logistic_adjusted_df2$zvalue =
ps_logistic_adjusted_df2$ci_lower = ci_mod[[i]]
ps_logistic_adjusted_df2$ci_upper =
}
ci_lower_logistic = ci_mod[["2.5 %"]]
ci_upper_logistic = ci_mod[["97.5 %"]]
pval_logistic = summary(model_adjusted)$coefficients[2,4]
se_logistic = summary(model_adjusted)$coefficients[2,2]
zval_logistic = summary(model_adjusted)$coefficients[2,3]
ci_mod = exp(confint(model_adjusted))[2,]
ci_lower_logistic = ci_mod[["2.5 %"]]
ci_upper_logistic = ci_mod[["97.5 %"]]
df$var_name = var_name
df$number_samples = number_samples
df$beta = beta_logistic
df$odds_ratio = or_logistic
df$pvalue = pval_logistic
df$se = se_logistic
df$zvalue = zval_logistic
df$ci_lower = ci_lower_logistic
df$ci_upper = ci_upper_logistic