starting corr plots
This commit is contained in:
parent
cd86fcf8e8
commit
a6d93b3fa8
2 changed files with 92 additions and 107 deletions
|
@ -1,28 +1,7 @@
|
||||||
#!/usr/bin/env Rscript
|
#!/usr/bin/env Rscript
|
||||||
#########################################################
|
#########################################################
|
||||||
# TASK: Script to format data for Correlation plots:
|
# TASK: Script to format data for Correlation plots:
|
||||||
|
|
||||||
# corr_data_extract()
|
# corr_data_extract()
|
||||||
# INPUT:
|
|
||||||
# df: data with all parameters (my_use case)
|
|
||||||
# merged_df3 or merged_df2!?
|
|
||||||
# gene: [sanity check]
|
|
||||||
# drug: relates to a column name that will need to extracted
|
|
||||||
# ligand_dist_colname = LigDist_colname (variable from plotting_globals()
|
|
||||||
|
|
||||||
# colnames_to_extract = c("mutationinformation", "duet_affinity_change")
|
|
||||||
# display_colnames_key = c(mutationinformation = "MUT" , duet_affinity_change = "DUET")
|
|
||||||
# extract_scaled_cols = T or F, so that parameters with the _scaled suffix can be extracted.
|
|
||||||
# NOTE*: No formatting applied to these cols i.e display name
|
|
||||||
|
|
||||||
# RETURNS: DF
|
|
||||||
# containing all the columns required for generating downstream correlation plots
|
|
||||||
|
|
||||||
# TODO: ADD
|
|
||||||
#lineage_count_all
|
|
||||||
#lineage_count_unique
|
|
||||||
#my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
|
|
||||||
#my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_uc
|
|
||||||
|
|
||||||
##################################################################
|
##################################################################
|
||||||
# LigDist_colname #from globals: plotting_globals.R
|
# LigDist_colname #from globals: plotting_globals.R
|
||||||
|
@ -31,14 +10,11 @@
|
||||||
corr_data_extract <- function(df
|
corr_data_extract <- function(df
|
||||||
, gene
|
, gene
|
||||||
, drug
|
, drug
|
||||||
#, ligand_dist_colname = LigDist_colname
|
|
||||||
, colnames_to_extract
|
, colnames_to_extract
|
||||||
, colnames_display_key
|
, colnames_display_key
|
||||||
, extract_scaled_cols = F){
|
, extract_scaled_cols = F){
|
||||||
|
|
||||||
if ( missing(colnames_to_extract) || missing(colnames_display_key) ){
|
if ( missing(colnames_to_extract) || missing(colnames_display_key) ){
|
||||||
#if ( missing(colnames_to_extract) ){
|
|
||||||
|
|
||||||
cat("\n=========================================="
|
cat("\n=========================================="
|
||||||
, "\nCORR PLOTS data: ALL params"
|
, "\nCORR PLOTS data: ALL params"
|
||||||
, "\n=========================================")
|
, "\n=========================================")
|
||||||
|
|
|
@ -127,48 +127,50 @@ dev.off()
|
||||||
#================
|
#================
|
||||||
# ppi2 affinity
|
# ppi2 affinity
|
||||||
#================
|
#================
|
||||||
corr_ppi2_colnames = c("mCSM-PPI2"
|
if (tolower(gene)%in%geneL_ppi2){
|
||||||
, "MAF"
|
corr_ppi2_colnames = c("mCSM-PPI2"
|
||||||
, "Log(OR)"
|
, "MAF"
|
||||||
, "-Log(P)"
|
, "Log(OR)"
|
||||||
, "PPI-Dist" # "interface_dist"
|
, "-Log(P)"
|
||||||
, "dst_mode"
|
, "PPI-Dist" # "interface_dist"
|
||||||
, drug)
|
, "dst_mode"
|
||||||
|
, drug)
|
||||||
|
|
||||||
corr_ppi2_colnames%in%colnames(corr_plotdf)
|
corr_ppi2_colnames%in%colnames(corr_plotdf)
|
||||||
corr_df_ppi2 = corr_plotdf[, corr_ppi2_colnames]
|
corr_df_ppi2 = corr_plotdf[, corr_ppi2_colnames]
|
||||||
corr_df_ppi2 = corr_df_ppi2[corr_df_ppi2["PPI-Dist"]<DistCutOff,]
|
corr_df_ppi2 = corr_df_ppi2[corr_df_ppi2["PPI-Dist"]<DistCutOff,]
|
||||||
complete_obs_ppi2 = nrow(corr_df_ppi2) - sum(is.na(corr_df_ppi2$`Log(OR)`))
|
complete_obs_ppi2 = nrow(corr_df_ppi2) - sum(is.na(corr_df_ppi2$`Log(OR)`))
|
||||||
cat("\nComplete muts for ppi2 affinity for", gene, ":", complete_obs_ppi2)
|
cat("\nComplete muts for ppi2 affinity for", gene, ":", complete_obs_ppi2)
|
||||||
|
|
||||||
color_coln = which(colnames(corr_df_ppi2) == "dst_mode")
|
color_coln = which(colnames(corr_df_ppi2) == "dst_mode")
|
||||||
end = which(colnames(corr_df_ppi2) == drug)
|
end = which(colnames(corr_df_ppi2) == drug)
|
||||||
ncol_omit = 3 #omit dist col
|
ncol_omit = 3 #omit dist col
|
||||||
corr_end = end-ncol_omit
|
corr_end = end-ncol_omit
|
||||||
|
|
||||||
#------------------------
|
#------------------------
|
||||||
# Output: ppi2 corrP
|
# Output: ppi2 corrP
|
||||||
#------------------------
|
#------------------------
|
||||||
corr_ppi2P = paste0(outdir_images
|
corr_ppi2P = paste0(outdir_images
|
||||||
,tolower(gene)
|
,tolower(gene)
|
||||||
,"_corr_ppi2.svg" )
|
,"_corr_ppi2.svg" )
|
||||||
|
|
||||||
cat("Corr plot ppi2 with coloured dots:", corr_ppi2P)
|
cat("Corr plot ppi2 with coloured dots:", corr_ppi2P)
|
||||||
svg(corr_ppi2P, width = 10, height = 10)
|
svg(corr_ppi2P, width = 10, height = 10)
|
||||||
|
|
||||||
my_corr_pairs(corr_data_all = corr_df_ppi2
|
my_corr_pairs(corr_data_all = corr_df_ppi2
|
||||||
, corr_cols = colnames(corr_df_ppi2[1:corr_end])
|
, corr_cols = colnames(corr_df_ppi2[1:corr_end])
|
||||||
, corr_method = "spearman"
|
, corr_method = "spearman"
|
||||||
, colour_categ_col = colnames(corr_df_ppi2[color_coln]) #"dst_mode"
|
, colour_categ_col = colnames(corr_df_ppi2[color_coln]) #"dst_mode"
|
||||||
, categ_colour = c("red", "blue")
|
, categ_colour = c("red", "blue")
|
||||||
, density_show = F
|
, density_show = F
|
||||||
, hist_col = "coral4"
|
, hist_col = "coral4"
|
||||||
, dot_size = 2
|
, dot_size = 2
|
||||||
, ats = 1.5
|
, ats = 1.5
|
||||||
, corr_lab_size = 3
|
, corr_lab_size = 3
|
||||||
, corr_value_size = 1)
|
, corr_value_size = 1)
|
||||||
|
|
||||||
dev.off()
|
dev.off()
|
||||||
|
}
|
||||||
|
|
||||||
# FIXME: ADD distance
|
# FIXME: ADD distance
|
||||||
#==================
|
#==================
|
||||||
|
@ -177,48 +179,52 @@ dev.off()
|
||||||
#================
|
#================
|
||||||
# NA affinity
|
# NA affinity
|
||||||
#================
|
#================
|
||||||
corr_na_colnames = c("mCSM-NA"
|
if (tolower(gene)%in%geneL_na){
|
||||||
, "MAF"
|
|
||||||
, "Log(OR)"
|
|
||||||
, "-Log(P)"
|
|
||||||
, "NA-Dist" # "NA_dist"
|
|
||||||
, "dst_mode"
|
|
||||||
, drug)
|
|
||||||
|
|
||||||
corr_na_colnames%in%colnames(corr_plotdf)
|
corr_na_colnames = c("mCSM-NA"
|
||||||
corr_df_na = corr_plotdf[, corr_na_colnames]
|
, "MAF"
|
||||||
corr_df_na = corr_df_na[corr_df_na["NA-Dist"]<DistCutOff,]
|
, "Log(OR)"
|
||||||
complete_obs_na = nrow(corr_df_na) - sum(is.na(corr_df_na$`Log(OR)`))
|
, "-Log(P)"
|
||||||
cat("\nComplete muts for NA affinity for", gene, ":", complete_obs_na)
|
, "NA-Dist" # "NA_dist"
|
||||||
|
, "dst_mode"
|
||||||
|
, drug)
|
||||||
|
|
||||||
color_coln = which(colnames(corr_df_na) == "dst_mode")
|
corr_na_colnames%in%colnames(corr_plotdf)
|
||||||
end = which(colnames(corr_df_na) == drug)
|
corr_df_na = corr_plotdf[, corr_na_colnames]
|
||||||
ncol_omit = 3 #omit dist col
|
corr_df_na = corr_df_na[corr_df_na["NA-Dist"]<DistCutOff,]
|
||||||
corr_end = end-ncol_omit
|
complete_obs_na = nrow(corr_df_na) - sum(is.na(corr_df_na$`Log(OR)`))
|
||||||
|
cat("\nComplete muts for NA affinity for", gene, ":", complete_obs_na)
|
||||||
|
|
||||||
#------------------------
|
color_coln = which(colnames(corr_df_na) == "dst_mode")
|
||||||
# Output: mCSM-NA corrP
|
end = which(colnames(corr_df_na) == drug)
|
||||||
#------------------------
|
ncol_omit = 3 #omit dist col
|
||||||
corr_naP = paste0(outdir_images
|
corr_end = end-ncol_omit
|
||||||
,tolower(gene)
|
|
||||||
,"_corr_na.svg" )
|
|
||||||
|
|
||||||
cat("Corr plot mCSM-NA with coloured dots:", corr_naP)
|
#------------------------
|
||||||
svg(corr_naP, width = 10, height = 10)
|
# Output: mCSM-NA corrP
|
||||||
|
#------------------------
|
||||||
|
corr_naP = paste0(outdir_images
|
||||||
|
,tolower(gene)
|
||||||
|
,"_corr_na.svg" )
|
||||||
|
|
||||||
my_corr_pairs(corr_data_all = corr_df_na
|
cat("Corr plot mCSM-NA with coloured dots:", corr_naP)
|
||||||
, corr_cols = colnames(corr_df_na[1:corr_end])
|
svg(corr_naP, width = 10, height = 10)
|
||||||
, corr_method = "spearman"
|
|
||||||
, colour_categ_col = colnames(corr_df_na[color_coln]) #"dst_mode"
|
my_corr_pairs(corr_data_all = corr_df_na
|
||||||
, categ_colour = c("red", "blue")
|
, corr_cols = colnames(corr_df_na[1:corr_end])
|
||||||
, density_show = F
|
, corr_method = "spearman"
|
||||||
, hist_col = "coral4"
|
, colour_categ_col = colnames(corr_df_na[color_coln]) #"dst_mode"
|
||||||
, dot_size = 2
|
, categ_colour = c("red", "blue")
|
||||||
, ats = 1.5
|
, density_show = F
|
||||||
, corr_lab_size = 3
|
, hist_col = "coral4"
|
||||||
, corr_value_size = 1)
|
, dot_size = 2
|
||||||
|
, ats = 1.5
|
||||||
|
, corr_lab_size = 3
|
||||||
|
, corr_value_size = 1)
|
||||||
|
|
||||||
|
dev.off()
|
||||||
|
}
|
||||||
|
|
||||||
dev.off()
|
|
||||||
|
|
||||||
####################################################
|
####################################################
|
||||||
# CONSERVATION
|
# CONSERVATION
|
||||||
|
@ -265,3 +271,6 @@ my_corr_pairs(corr_data_all = corr_df_cons
|
||||||
, corr_value_size = 1)
|
, corr_value_size = 1)
|
||||||
|
|
||||||
dev.off()
|
dev.off()
|
||||||
|
|
||||||
|
|
||||||
|
#
|
Loading…
Add table
Add a link
Reference in a new issue