added plotting scripts from old run

This commit is contained in:
Tanushree Tunstall 2020-08-21 13:25:01 +01:00
parent d78626048c
commit a448d9276b
2 changed files with 760 additions and 0 deletions

View file

@ -0,0 +1,442 @@
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
#########################################################
# TASK: To combine struct params and meta data for plotting
# Input csv files:
# 1) <gene>_all_params.csv
# 2) <gene>_meta_data.csv
# Output:
# 1) muts with opposite effects on stability
# 2) large combined df including NAs for AF, OR,etc
# Dim: same no. of rows as gene associated meta_data_with_AFandOR
# 3) small combined df including NAs for AF, OR, etc.
# Dim: same as mcsm data
# 4) large combined df excluding NAs
# Dim: dim(#1) - no. of NAs(AF|OR) + 1
# 5) small combined df excluding NAs
# Dim: dim(#2) - no. of unique NAs - 1
# This script is sourced from other .R scripts for plotting
#########################################################
##########################################################
# Installing and loading required packages
##########################################################
source("Header_TT.R")
#require(data.table)
#require(arsenal)
#require(compare)
#library(tidyverse)
#%% variable assignment: input and output paths & filenames
drug = "pyrazinamide"
gene = "pncA"
gene_match = paste0(gene,"_p.")
cat(gene_match)
#=============
# directories
#=============
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
#===========
# input
#===========
#in_filename = "mcsm_complex1_normalised.csv"
in_filename_params = paste0(tolower(gene), "_all_params.csv")
infile_params = paste0(outdir, "/", in_filename_params)
cat(paste0("Input file 1:", infile_params) )
# infile 2: gene associated meta data
#in_filename_gene_metadata = paste0(tolower(gene), "_meta_data_with_AFandOR.csv")
in_filename_gene_metadata = paste0(tolower(gene), "_metadata.csv")
infile_gene_metadata = paste0(outdir, "/", in_filename_gene_metadata)
cat(paste0("Input infile 2:", infile_gene_metadata))
#===========
# output
#===========
# mutations with opposite effects
out_filename_opp_muts = paste0(tolower(gene), "_muts_opp_effects.csv")
outfile_opp_muts = paste0(outdir, "/", out_filename_opp_muts)
#%%===============================================================
###########################
# Read file: struct params
###########################
cat("Reading struct params including mcsm:"
, in_filename_params)
mcsm_data = read.csv(infile_params
#, row.names = 1
, stringsAsFactors = F
, header = T)
cat("Input dimensions:", dim(mcsm_data)) #416, 86
# clear variables
rm(in_filename_params, infile_params)
str(mcsm_data)
table(mcsm_data$duet_outcome); sum(table(mcsm_data$duet_outcome) )
# spelling Correction 1: DUET incase American spelling needed!
#mcsm_data$duet_outcome[mcsm_data$duet_outcome=="Stabilising"] <- "Stabilizing"
#mcsm_data$duet_outcome[mcsm_data$duet_outcome=="Destabilising"] <- "Destabilizing"
# checks: should be the same as above
table(mcsm_data$duet_outcome); sum(table(mcsm_data$duet_outcome) )
head(mcsm_data$duet_outcome); tail(mcsm_data$duet_outcome)
# spelling Correction 2: Ligand incase American spelling needed!
table(mcsm_data$ligand_outcome); sum(table(mcsm_data$ligand_outcome) )
#mcsm_data$ligand_outcome[mcsm_data$ligand_outcome=="Stabilising"] <- "Stabilizing"
#mcsm_data$ligand_outcome[mcsm_data$ligand_outcome=="Destabilising"] <- "Destabilizing"
# checks: should be the same as above
table(mcsm_data$ligand_outcome); sum(table(mcsm_data$ligand_outcome) )
head(mcsm_data$ligand_outcome); tail(mcsm_data$ligand_outcome)
# muts with opposing effects on protomer and ligand stability
table(mcsm_data$duet_outcome != mcsm_data$ligand_outcome)
changes = mcsm_data[which(mcsm_data$duet_outcome != mcsm_data$ligand_outcome),]
# sanity check: redundant, but uber cautious!
dl_i = which(mcsm_data$duet_outcome != mcsm_data$ligand_outcome)
ld_i = which(mcsm_data$ligand_outcome != mcsm_data$duet_outcome)
cat("Identifying muts with opposite stability effects")
if(nrow(changes) == (table(mcsm_data$duet_outcome != mcsm_data$ligand_outcome)[[2]]) & identical(dl_i,ld_i)) {
cat("PASS: muts with opposite effects on stability and affinity correctly identified"
, "\nNo. of such muts: ", nrow(changes))
}else {
cat("FAIL: unsuccessful in extracting muts with changed stability effects")
}
#***************************
# write file: changed muts
write.csv(changes, outfile_opp_muts)
cat("Finished writing file for muts with opp effects:"
, "\nFilename: ", outfile_opp_muts
, "\nDim:", dim(changes))
# clear variables
rm(out_filename_opp_muts, outfile_opp_muts)
rm(changes, dl_i, ld_i)
#***************************
# count na in each column
na_count = sapply(mcsm_data, function(y) sum(length(which(is.na(y))))); na_count
# sort by mutationinformation
##mcsm_data = mcsm_data[order(mcsm_data$mutationinformation),]
##head(mcsm_data$mutationinformation)
df_ncols = ncol(mcsm_data)
# REMOVE as this is dangerous due to dup muts
# get freq count of positions and add to the df
#setDT(mcsm_data)[, occurrence := .N, by = .(position)]
#cat("Added 1 col: position frequency to see which posn has how many muts"
# , "\nNo. of cols now", ncol(mcsm_data)
# , "\nNo. of cols before: ", df_ncols)
#pos_count_check = data.frame(mcsm_data$position, mcsm_data$occurrence)
# check duplicate muts
if (length(unique(mcsm_data$mutationinformation)) == length(mcsm_data$mutationinformation)){
cat("No duplicate mutations in mcsm data")
}else{
dup_muts = mcsm_data[duplicated(mcsm_data$mutationinformation),]
dup_muts_nu = length(unique(dup_muts$mutationinformation))
cat(paste0("CAUTION:", nrow(dup_muts), " Duplicate mutations identified"
, "\nOf these, no. of unique mutations are:", dup_muts_nu
, "\nExtracting df with unique mutations only"))
mcsm_data_u = mcsm_data[!duplicated(mcsm_data$mutationinformation),]
}
if (nrow(mcsm_data_u) == length(unique(mcsm_data$mutationinformation))){
cat("Df without duplicate mutations successfully extracted")
} else{
cat("FAIL: could not extract clean df!")
quit()
}
###########################
# 2: Read file: <gene>_meta data.csv
###########################
cat("Reading meta data file:", infile_gene_metadata)
gene_metadata <- read.csv(infile_gene_metadata
, stringsAsFactors = F
, header = T)
cat("Dim:", dim(gene_metadata))
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME: remove
# counting NAs in AF, OR cols:
if (identical(sum(is.na(gene_metadata$OR))
, sum(is.na(gene_metadata$pvalue))
, sum(is.na(gene_metadata$AF)))){
cat("PASS: NA count match for OR, pvalue and AF\n")
na_count = sum(is.na(gene_metadata$AF))
cat("No. of NAs: ", sum(is.na(gene_metadata$OR)))
} else{
cat("FAIL: NA count mismatch"
, "\nNA in OR: ", sum(is.na(gene_metadata$OR))
, "\nNA in pvalue: ", sum(is.na(gene_metadata$pvalue))
, "\nNA in AF:", sum(is.na(gene_metadata$AF)))
}
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# clear variables
rm(in_filename_gene_metadata, infile_gene_metadata)
str(gene_metadata)
# sort by position (same as mcsm_data)
# earlier it was mutationinformation
#head(gene_metadata$mutationinformation)
#gene_metadata = gene_metadata[order(gene_metadata$mutationinformation),]
##head(gene_metadata$mutationinformation)
head(gene_metadata$position)
gene_metadata = gene_metadata[order(gene_metadata$position),]
head(gene_metadata$position)
###########################
# Merge 1: two dfs with NA
# merged_df2
###########################
head(mcsm_data$mutationinformation)
head(gene_metadata$mutationinformation)
# Find common columns b/w two df
merging_cols = intersect(colnames(mcsm_data), colnames(gene_metadata))
cat(paste0("Merging dfs with NAs: big df (1-many relationship b/w id & mut)"
, "\nNo. of merging cols:", length(merging_cols)
, "\nMerging columns identified:"))
print(merging_cols)
#=============
# merged_df2): gene_metadata + mcsm_data
#==============
merged_df2 = merge(x = gene_metadata
, y = mcsm_data
, by = merging_cols
, all.y = T)
cat("Dim of merged_df2: ", dim(merged_df2) #4520, 11
)
head(merged_df2$position)
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME: count how many unique muts have entries in meta data
# sanity check
cat("Checking nrows in merged_df2")
if(nrow(gene_metadata) == nrow(merged_df2)){
cat("nrow(merged_df2) = nrow (gene associated gene_metadata)"
,"\nExpected no. of rows: ",nrow(gene_metadata)
,"\nGot no. of rows: ", nrow(merged_df2))
} else{
cat("nrow(merged_df2)!= nrow(gene associated gene_metadata)"
, "\nExpected no. of rows after merge: ", nrow(gene_metadata)
, "\nGot no. of rows: ", nrow(merged_df2)
, "\nFinding discrepancy")
merged_muts_u = unique(merged_df2$mutationinformation)
meta_muts_u = unique(gene_metadata$mutationinformation)
# find the index where it differs
unique(meta_muts_u[! meta_muts_u %in% merged_muts_u])
}
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# sort by position
head(merged_df2$position)
merged_df2 = merged_df2[order(merged_df2$position),]
head(merged_df2$position)
merged_df2v3 = merge(x = gene_metadata
, y = mcsm_data
, by = merging_cols
, all = T)
merged_df2v2 = merge(x = gene_metadata
, y = mcsm_data
, by = merging_cols
, all.x = T)
#!=!=!=!=!=!=!=!
# COMMENT: used all.y since position 186 is not part of the struc,
# hence doesn"t have a mcsm value
# but 186 is associated with mutation
#!=!=!=!=!=!=!=!
# should be False
identical(merged_df2, merged_df2v2)
table(merged_df2$position%in%merged_df2v2$position)
rm(merged_df2v2)
#!!!!!!!!!!! check why these differ
#########
# merge 3b (merged_df3):remove duplicate mutation information
#########
cat("Merging dfs without NAs: small df (removing muts with no AF|OR associated)"
,"\nCannot trust lineage info from this"
,"\nlinking col: Mutationinforamtion"
,"\nfilename: merged_df3")
#==#=#=#=#=#=#
# Cannot trust lineage, country from this df as the same mutation
# can have many different lineages
# but this should be good for the numerical corr plots
#=#=#=#=#=#=#=
merged_df3 = merged_df2[!duplicated(merged_df2$mutationinformation),]
head(merged_df3$position); tail(merged_df3$position) # should be sorted
# sanity check
cat("Checking nrows in merged_df3")
if(nrow(mcsm_data) == nrow(merged_df3)){
cat("PASS: No. of rows match with mcsm_data"
,"\nExpected no. of rows: ", nrow(mcsm_data)
,"\nGot no. of rows: ", nrow(merged_df3))
} else {
cat("FAIL: No. of rows mismatch"
, "\nNo. of rows mcsm_data: ", nrow(mcsm_data)
, "\nNo. of rows merged_df3: ", nrow(merged_df3))
}
# counting NAs in AF, OR cols in merged_df3
# this is becuase mcsm has no AF, OR cols,
# so you cannot count NAs
if (identical(sum(is.na(merged_df3$OR))
, sum(is.na(merged_df3$pvalue))
, sum(is.na(merged_df3$AF)))){
cat("PASS: NA count match for OR, pvalue and AF\n")
na_count_df3 = sum(is.na(merged_df3$AF))
cat("No. of NAs: ", sum(is.na(merged_df3$OR)))
} else{
cat("FAIL: NA count mismatch"
, "\nNA in OR: ", sum(is.na(merged_df3$OR))
, "\nNA in pvalue: ", sum(is.na(merged_df3$pvalue))
, "\nNA in AF:", sum(is.na(merged_df3$AF)))
}
###########################
# 4: merging two dfs: without NA
###########################
#########
# merge 4a (merged_df2_comp): same as merge 1 but excluding NA
#########
cat("Merging dfs without any NAs: big df (1-many relationship b/w id & mut)"
,"\nlinking col: Mutationinforamtion"
,"\nfilename: merged_df2_comp")
merged_df2_comp = merged_df2[!is.na(merged_df2$AF),]
#merged_df2_comp = merged_df2[!duplicated(merged_df2$mutationinformation),]
# sanity check
cat("Checking nrows in merged_df2_comp")
if(nrow(merged_df2_comp) == (nrow(merged_df2) - na_count + 1)){
cat("PASS: No. of rows match"
,"\nDim of merged_df2_comp: "
,"\nExpected no. of rows: ", nrow(merged_df2) - na_count + 1
, "\nNo. of rows: ", nrow(merged_df2_comp)
, "\nNo. of cols: ", ncol(merged_df2_comp))
}else{
cat("FAIL: No. of rows mismatch"
,"\nExpected no. of rows: ", nrow(merged_df2) - na_count + 1
,"\nGot no. of rows: ", nrow(merged_df2_comp))
}
#########
# merge 4b (merged_df3_comp): remove duplicate mutation information
#########
merged_df3_comp = merged_df2_comp[!duplicated(merged_df2_comp$mutationinformation),]
cat("Dim of merged_df3_comp: "
, "\nNo. of rows: ", nrow(merged_df3_comp)
, "\nNo. of cols: ", ncol(merged_df3_comp))
# alternate way of deriving merged_df3_comp
foo = merged_df3[!is.na(merged_df3$AF),]
# compare dfs: foo and merged_df3_com
all.equal(foo, merged_df3)
summary(comparedf(foo, merged_df3))
# sanity check
cat("Checking nrows in merged_df3_comp")
if(nrow(merged_df3_comp) == nrow(merged_df3)){
cat("NO NAs detected in merged_df3 in AF|OR cols"
,"\nNo. of rows are identical: ", nrow(merged_df3))
} else{
if(nrow(merged_df3_comp) == nrow(merged_df3) - na_count_df3) {
cat("PASS: NAs detected in merged_df3 in AF|OR cols"
, "\nNo. of NAs: ", na_count_df3
, "\nExpected no. of rows in merged_df3_comp: ", nrow(merged_df3) - na_count_df3
, "\nGot no. of rows: ", nrow(merged_df3_comp))
}
}
#=============== end of combining df
#*********************
# writing 1 file in the style of a loop: merged_df3
# print(output dir)
#i = "merged_df3"
#out_filename = paste0(i, ".csv")
#outfile = paste0(outdir, "/", out_filename)
#cat("Writing output file: "
# ,"\nFilename: ", out_filename
# ,"\nPath: ", outdir)
#template: write.csv(merged_df3, "merged_df3.csv")
#write.csv(get(i), outfile, row.names = FALSE)
#cat("Finished writing: ", outfile
# , "\nNo. of rows: ", nrow(get(i))
# , "\nNo. of cols: ", ncol(get(i)))
#%% write_output files; all 4 files:
outvars = c("merged_df2"
, "merged_df3"
, "merged_df2_comp"
, "merged_df3_comp")
cat("Writing output files: "
, "\nPath:", outdir)
for (i in outvars){
# cat(i, "\n")
out_filename = paste0(i, ".csv")
# cat(out_filename, "\n")
# cat("getting value of variable: ", get(i))
outfile = paste0(outdir, "/", out_filename)
# cat("Full output path: ", outfile, "\n")
cat("Writing output file:"
,"\nFilename: ", out_filename,"\n")
write.csv(get(i), outfile, row.names = FALSE)
cat("Finished writing: ", outfile
, "\nNo. of rows: ", nrow(get(i))
, "\nNo. of cols: ", ncol(get(i)), "\n")
}
# alternate way to replace with implicit loop
# FIXME
#sapply(outvars, function(x, y) write.csv(get(outvars), paste0(outdir, "/", outvars, ".csv")))
#*************************
# clear variables
rm(mcsm_data, gene_metadata, foo, drug, gene, gene_match, indir, merged_muts_u, meta_muts_u, na_count, df_ncols, outdir)
rm(pos_count_check)
#============================= end of script

View file

@ -0,0 +1,318 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: Replace B-factors in the pdb file with the mean
# normalised stability values.
# read pdb file
# make two copies so you can replace B factors for 1)duet
# 2)affinity values and output 2 separate pdbs for
# rendering on chimera
# read mcsm mean stability value files
# extract the respecitve mean values and assign to the
# b-factor column within their respective pdbs
# generate some distribution plots for inspection
#########################################################
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
cat(c(getwd(),"\n"))
#source("Header_TT.R")
library(bio3d)
require("getopt", quietly = TRUE) # cmd parse arguments
#========================================================
# command line args
spec = matrix(c(
"drug" , "d", 1, "character",
"gene" , "g", 1, "character"
), byrow = TRUE, ncol = 4)
opt = getopt(spec)
drug = opt$drug
gene = opt$gene
if(is.null(drug)|is.null(gene)) {
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
}
#========================================================
#%% variable assignment: input and output paths & filenames
drug = "pyrazinamide"
gene = "pncA"
gene_match = paste0(gene,"_p.")
cat(gene_match)
#=============
# directories
#=============
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
#======
# input
#======
in_filename_pdb = paste0(tolower(gene), "_complex.pdb")
infile_pdb = paste0(indir, "/", in_filename_pdb)
cat(paste0("Input file:", infile_pdb) )
in_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
infile_mean_stability = paste0(outdir, "/", in_filename_mean_stability)
cat(paste0("Input file:", infile_mean_stability) )
#=======
# output
#=======
out_filename_duet_mspdb = paste0(tolower(gene), "_complex_b_duetms.pdb")
outfile_duet_mspdb = paste0(outdir, "/", out_filename_duet_mspdb)
print(paste0("Output file:", outfile_duet_mspdb))
out_filename_lig_mspdb = paste0(tolower(gene), "_complex_b_ligms.pdb")
outfile_lig_mspdb = paste0(outdir, "/", out_filename_lig_mspdb)
print(paste0("Output file:", outfile_lig_mspdb))
#%%===============================================================
###########################
# Read file: average stability values
# or mcsm_normalised file
###########################
my_df <- read.csv(infile_mean_stability, header = T)
str(my_df)
#############
# Read pdb
#############
# list of 8
my_pdb = read.pdb(infile_pdb
, maxlines = -1
, multi = FALSE
, rm.insert = FALSE
, rm.alt = TRUE
, ATOM.only = FALSE
, hex = FALSE
, verbose = TRUE)
rm(in_filename_mean_stability, in_filename_pdb)
# assign separately for duet and ligand
my_pdb_duet = my_pdb
my_pdb_lig = my_pdb
#=========================================================
# Replacing B factor with mean stability scores
# within the respective dfs
#==========================================================
# extract atom list into a variable
# since in the list this corresponds to data frame, variable will be a df
df_duet = my_pdb_duet[[1]]
df_lig = my_pdb_lig[[1]]
# make a copy: required for downstream sanity checks
d2_duet = df_duet
d2_lig = df_lig
# sanity checks: B factor
max(df_duet$b); min(df_duet$b)
max(df_lig$b); min(df_lig$b)
#*******************************************
# histograms and density plots for inspection
# 1: original B-factors
# 2: original mean stability values
# 3: replaced B-factors with mean stability values
#*********************************************
# Set the margin on all sides
par(oma = c(3,2,3,0)
, mar = c(1,3,5,2)
#, mfrow = c(3,2)
, mfrow = c(3,4))
#************
# Row 1 plots: original B-factors
# duet and affinity
#************
hist(df_duet$b
, xlab = ""
, main = "Bfactor duet")
plot(density(df_duet$b)
, xlab = ""
, main = "Bfactor duet")
hist(df_lig$b
, xlab = ""
, main = "Bfactor affinity")
plot(density(df_lig$b)
, xlab = ""
, main = "Bfactor affinity")
#************
# Row 2 plots: original mean stability values
# duet and affinity
#************
hist(my_df$average_duet_scaled
, xlab = ""
, main = "mean duet scaled")
plot(density(my_df$average_duet_scaled)
, xlab = ""
, main = "mean duet scaled")
hist(my_df$average_affinity_scaled
, xlab = ""
, main = "mean affinity scaled")
plot(density(my_df$average_affinity_scaled)
, xlab = ""
, main = "mean affinity scaled")
#************
# Row 3 plots: replaced B-factors with mean stability values
# After actual replacement in the b factor column
#*************
#=========================================================
#=========
# step 0_P1: DONT RUN once you have double checked the matched output
#=========
# sanity check: match and assign to a separate column to double check
# colnames(my_df)
# df_duet$duet_scaled = my_df$averge_duet_scaled[match(df_duet$resno, my_df$position)]
#=========
# step 1_P1
#=========
# Be brave and replace in place now (don"t run sanity check)
# this makes all the B-factor values in the non-matched positions as NA
df_duet$b = my_df$average_duet_scaled[match(df_duet$resno, my_df$position)]
df_lig$b = my_df$average_affinity_scaled[match(df_lig$resno, my_df$position)]
#=========
# step 2_P1
#=========
# count NA in Bfactor
b_na_duet = sum(is.na(df_duet$b)) ; b_na_duet
b_na_lig = sum(is.na(df_lig$b)) ; b_na_lig
# count number of 0"s in Bactor
sum(df_duet$b == 0)
sum(df_lig$b == 0)
# replace all NA in b factor with 0
df_duet$b[is.na(df_duet$b)] = 0
df_lig$b[is.na(df_lig$b)] = 0
# sanity check: should be 0 and True
# duet
if (sum(df_duet$b == 0) == b_na_duet){
print ("PASS: NA"s replaced with 0"s successfully in df_duet")
} else {
print("FAIL: NA replacement in df_duet NOT successful")
quit()
}
max(df_duet$b); min(df_duet$b)
# lig
if (sum(df_lig$b == 0) == b_na_lig){
print ("PASS: NA"s replaced with 0"s successfully df_lig")
} else {
print("FAIL: NA replacement in df_lig NOT successful")
quit()
}
max(df_lig$b); min(df_lig$b)
# sanity checks: should be True
if( (max(df_duet$b) == max(my_df$average_duet_scaled)) & (min(df_duet$b) == min(my_df$average_duet_scaled)) ){
print("PASS: B-factors replaced correctly in df_duet")
} else {
print ("FAIL: To replace B-factors in df_duet")
quit()
}
if( (max(df_lig$b) == max(my_df$average_affinity_scaled)) & (min(df_lig$b) == min(my_df$average_affinity_scaled)) ){
print("PASS: B-factors replaced correctly in lig_duet")
} else {
print ("FAIL: To replace B-factors in lig_duet")
quit()
}
#=========
# step 3_P1
#=========
# sanity check: dim should be same before reassignment
if ( (dim(df_duet)[1] == dim(d2_duet)[1]) & (dim(df_lig)[1] == dim(d2_lig)[1]) &
(dim(df_duet)[2] == dim(d2_duet)[2]) & (dim(df_lig)[2] == dim(d2_lig)[2])
){
print("PASS: Dims of both dfs as expected")
} else {
print ("FAIL: Dims mismatch")
quit()}
#=========
# step 4_P1:
# VERY important
#=========
# assign it back to the pdb file
my_pdb_duet[[1]] = df_duet
max(df_duet$b); min(df_duet$b)
my_pdb_lig[[1]] = df_lig
max(df_lig$b); min(df_lig$b)
#=========
# step 5_P1
#=========
cat(paste0("output file duet mean stability pdb:", outfile_duet_mspdb))
write.pdb(my_pdb_duet, outfile_duet_mspdb)
cat(paste0("output file ligand mean stability pdb:", outfile_lig_mspdb))
write.pdb(my_pdb_lig, outfile_lig_mspdb)
#********************************
# Add the 3rd histogram and density plots for comparisons
#********************************
# Plots continued...
# Row 3 plots: hist and density of replaced B-factors with stability values
hist(df_duet$b
, xlab = ""
, main = "repalcedB duet")
plot(density(df_duet$b)
, xlab = ""
, main = "replacedB duet")
hist(df_lig$b
, xlab = ""
, main = "repalcedB affinity")
plot(density(df_lig$b)
, xlab = ""
, main = "replacedB affinity")
# graph titles
mtext(text = "Frequency"
, side = 2
, line = 0
, outer = TRUE)
mtext(text = "stability distribution"
, side = 3
, line = 0
, outer = TRUE)
#********************************
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# NOTE: This replaced B-factor distribution has the same
# x-axis as the PredAff normalised values, but the distribution
# is affected since 0 is overinflated. This is because all the positions
# where there are no SNPs have been assigned 0???
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!