tried pca
This commit is contained in:
parent
8d831f3613
commit
a15d801c2a
2 changed files with 35 additions and 28 deletions
|
@ -74,6 +74,7 @@ from sklearn.impute import KNNImputer as KNN
|
|||
import json
|
||||
import argparse
|
||||
import re
|
||||
from sklearn.decomposition import PCA
|
||||
#%% GLOBALS
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': os.cpu_count() } # the number of jobs should equal the number of CPU cores
|
||||
|
@ -281,6 +282,12 @@ def MultModelsCl(input_df, target
|
|||
('prep' , col_transform)
|
||||
, ('model' , model_fn)])
|
||||
|
||||
# model_pipeline = Pipeline([
|
||||
# ('prep' , col_transform)
|
||||
# , ('pca' , PCA(n_components = 2))
|
||||
# , ('model' , model_fn)])
|
||||
|
||||
|
||||
print('\nRunning model pipeline:', model_pipeline)
|
||||
skf_cv_modD = cross_validate(model_pipeline
|
||||
, input_df
|
||||
|
|
|
@ -82,7 +82,7 @@ fooD = MultModelsCl(input_df = df2['X']
|
|||
, tts_split_type = spl_type
|
||||
, resampling_type = 'none' # default
|
||||
, var_type = ['mixed']
|
||||
, scale_numeric = ['min_max_neg']
|
||||
, scale_numeric = ['min_max']
|
||||
, return_formatted_output = False
|
||||
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue