updated combining df scripts for duet & lig

This commit is contained in:
Tanushree Tunstall 2020-03-24 18:28:52 +00:00
parent c184841951
commit 96ebb85069
3 changed files with 458 additions and 342 deletions

View file

@ -1,9 +1,9 @@
#============================================
#########################################################
# TASK: To calculate Allele Frequency and
# Odds Ratio from master data
# and add the calculated params to meta_data extracted from
# pnca_data_extraction.py
#===========================================
# data_extraction.py
#########################################################
getwd()
setwd('~/git/LSHTM_analysis/meta_data_analysis')
getwd()
@ -14,9 +14,9 @@ gene = 'pncA'
gene_match = paste0(gene,'_p.')
cat(gene_match)
#=======
# input dir
#=======
#===========
# input
#===========
# infile1: Raw data
#indir = 'git/Data/pyrazinamide/input/original'
indir = paste0('~/git/Data')
@ -24,27 +24,26 @@ in_filename = 'original_tanushree_data_v2.csv'
infile = paste0(indir, '/', in_filename)
cat(paste0('Reading infile1: raw data', ' ', infile) )
# infile2: gene associated meta data file to extract valid snps and add calcs to
# filename: outfile3 from data_extraction.py
# infile2: gene associated meta data file to extract valid snps and add calcs to.
# This is outfile3 from data_extraction.py
indir_metadata = paste0('~/git/Data', '/', drug, '/', 'output')
in_filename_metadata = 'pnca_metadata.csv'
infile_metadata = paste0(indir_metadata, '/', in_filename_metadata)
cat(paste0('Reading infile2: gene associated metadata:', infile_metadata))
#=========
# output dir
#=========
#===========
# output
#===========
# outdir = 'git/Data/pyrazinamide/output'
outdir = paste0('~/git/Data', '/', drug, '/', 'output')
out_filename = paste0(tolower(gene),'_', 'meta_data_with_AFandOR.csv')
outfile = paste0(outdir, '/', out_filename)
cat(paste0('Output file with full path:', outfile))
#%% end of variable assignment for input and output files
#===============
# Step 1: Read master/raw data stored in Data/
#===============
#########################################################
# 1: Read master/raw data stored in Data/
#########################################################
raw_data_all = read.csv(infile, stringsAsFactors = F)
raw_data = raw_data_all[,c("id"
@ -55,9 +54,9 @@ rm(raw_data_all)
rm(indir, in_filename, infile)
#####
#===========
# 1a: exclude na
#####
#===========
raw_data = raw_data[!is.na(raw_data$pyrazinamide),]
total_samples = length(unique(raw_data$id))
@ -66,16 +65,16 @@ cat(paste0('Total samples without NA in', ' ', drug, 'is:', total_samples))
# sanity check: should be true
is.numeric(total_samples)
#####
#===========
# 1b: combine the two mutation columns
#####
#===========
raw_data$all_mutations_pyrazinamide = paste(raw_data$dr_mutations_pyrazinamide
, raw_data$other_mutations_pyrazinamide)
head(raw_data$all_mutations_pyrazinamide)
#####
#===========
# 1c: create yet another column that contains all the mutations but in lower case
#####
#===========
raw_data$all_muts_pnca = tolower(raw_data$all_mutations_pyrazinamide)
# sanity checks
@ -104,9 +103,10 @@ table(mut, dst)
#fisher.test(table(mut, dst))
#table(mut)
#===============
# Step 2: Read valid snps for which OR can be calculated (infile_comp_snps.csv)
#===============
#########################################################
# 2: Read valid snps for which OR
# can be calculated (infile_comp_snps.csv)
#########################################################
cat(paste0('Reading metadata infile:', infile_metadata))
pnca_metadata = read.csv(infile_metadata
@ -188,7 +188,7 @@ hist(log(ors)
, breaks = 100
)
# FIXME: could be good to add a sanity check
# sanity check
if (table(names(ors) == names(pvals)) & table(names(ors) == names(afs)) & table(names(pvals) == names(afs)) == length(pnca_snps_unique)){
cat('PASS: names of ors, pvals and afs match: proceed with combining into a single df')
} else{
@ -214,9 +214,9 @@ if (table(rownames(comb_AF_and_OR) == comb_AF_and_OR$mutation)){
cat('FAIL: rownames and mutation col values mismatch')
}
############
# Merge 1: combine meta data file with calculated num params
###########
#########################################################
# 3: Merge meta data file + calculated num params
#########################################################
df1 = pnca_metadata
df2 = comb_AF_and_OR
@ -254,7 +254,7 @@ if ( identical(na_count[[length(na_count)]], na_count[[length(na_count)-1]], na_
cat('PASS: No. of NAs for OR, AF and Pvals are equal as expected',
'\nNo. of NA: ', na_count[[length(na_count)]])
} else {
cat('FAIl: No. of NAs for OR, AF and Pvals mismatch')
cat('FAIL: No. of NAs for OR, AF and Pvals mismatch')
}
# reassign custom colnames
@ -289,6 +289,7 @@ cat(paste0('Added', ' ', ncol_added, ' more cols to merged_df:'
, '\nno. of cols in merged_df now: ', ncol(merged_df)))
#%% write file out: pnca_meta_data_with_AFandOR
#*********************************************
cat(paste0('writing output file: '
, '\nFilename: ', out_filename
, '\nPath:', outdir))
@ -300,6 +301,98 @@ cat(paste0('Finished writing:'
, out_filename
, '\nNo. of rows: ', nrow(merged_df)
, '\nNo. of cols: ', ncol(merged_df)))
#************************************************
cat('======================================================================')
rm(out_filename)
cat('End of script: calculated AF, OR, pvalues and saved file')
# End of script
#%%
# sanity check: Count NA in these four cols.
# However these need to be numeric else these
# will be misleading when counting NAs (i.e retrun 0)
#is.numeric(meta_with_afor$OR)
na_var = c('AF', 'OR', 'pvalue', 'logor', 'neglog10pvalue')
# loop through these vars and check if these are numeric.
# if not, then convert to numeric
check_all = NULL
for (i in na_var){
# cat(i)
check0 = is.numeric(meta_with_afor[,i])
if (check0) {
check_all = c(check0, check_all)
cat('These are all numeric cols')
} else{
cat('First converting to numeric')
check0 = as.numeric(meta_with_afor[,i])
check_all = c(check0, check_all)
}
}
# count na now that the respective cols are numeric
na_count = sapply(meta_with_afor, function(y) sum(length(which(is.na(y))))); na_count
str(na_count)
# extract how many NAs:
# should be all TRUE
# should be a single number since
# all the cols should have 'equal' and 'same' no. of NAs
# compare if the No of 'NA' are the same for all these cols
na_len = NULL
for (i in na_var){
temp = na_count[[i]]
na_len = c(na_len, temp)
}
cat('Checking how many NAs and if these are identical for the selected cols:')
my_nrows = NULL
for ( i in 1: (length(na_len)-1) ){
# cat(compare(na_len[i]), na_len[i+1])
c = compare(na_len[i], na_len[i+1])
if ( c$result ) {
cat('PASS: No. of NAa in selected cols are identical')
my_nrows = na_len[i] }
else {
cat('FAIL: No. of NAa in selected cols mismatch')
}
}
cat('No. of NAs in each of the selected cols: ', my_nrows)
# yet more sanity checks:
cat('Check whether the ', my_nrows, 'indices are indeed the same')
#which(is.na(meta_with_afor$OR))
# initialise an empty df with nrows as extracted above
na_count_df = data.frame(matrix(vector(mode = 'numeric'
# , length = length(na_var)
)
, nrow = my_nrows
# , ncol = length(na_var)
))
# populate the df with the indices of the cols that are NA
for (i in na_var){
cat(i)
na_i = which(is.na(meta_with_afor[i]))
na_count_df = cbind(na_count_df, na_i)
colnames(na_count_df)[which(na_var == i)] <- i
}
# Now compare these indices to ensure these are the same
check2 = NULL
for ( i in 1: ( length(na_count_df)-1 ) ) {
# cat(na_count_df[i] == na_count_df[i+1])
check_all = identical(na_count_df[[i]], na_count_df[[i+1]])
check2 = c(check_all, check2)
if ( all(check2) ) {
cat('PASS: The indices for AF, OR, etc are all the same\n')
} else {
cat ('FAIL: Please check indices which are NA')
}
}