added mychisq_or.R and af_or_calcs.R
This commit is contained in:
parent
ad0b814f9c
commit
96af746726
2 changed files with 267 additions and 0 deletions
254
scripts/functions/af_or_calcs.R
Normal file
254
scripts/functions/af_or_calcs.R
Normal file
|
@ -0,0 +1,254 @@
|
|||
my_afor <- function ( infile_master
|
||||
, infile_metadata
|
||||
, outfile
|
||||
, drug
|
||||
, gene
|
||||
, idcol = "id"
|
||||
, dr_muts_col
|
||||
, other_muts_col){
|
||||
|
||||
#===========================================
|
||||
# 1: Read master/raw data stored in Data/
|
||||
#===========================================
|
||||
raw_data_all = read.csv(infile_master, stringsAsFactors = F)
|
||||
|
||||
cat("\nExtracting columns based on variables:\n"
|
||||
, drug
|
||||
, "\n"
|
||||
, dr_muts_col
|
||||
, "\n"
|
||||
, other_muts_col
|
||||
, "\n===============================================================")
|
||||
|
||||
raw_data = raw_data_all[,c(idcol
|
||||
, drug
|
||||
, dr_muts_col
|
||||
, other_muts_col)]
|
||||
#rm(raw_data_all)
|
||||
#rm(indir, in_filename_master, infile_master)
|
||||
|
||||
#-------------------
|
||||
# 1a: exclude na
|
||||
#--------------------
|
||||
raw_data = raw_data[!is.na(raw_data[[drug]]),]
|
||||
|
||||
total_samples = length(unique(raw_data[[idcol]]))
|
||||
cat(paste0("\nTotal samples without NA in", " ", drug, " is:", total_samples))
|
||||
|
||||
# sanity check: should be true
|
||||
cat("\nThis should be True:\n"
|
||||
, is.numeric(total_samples))
|
||||
|
||||
#----------------------------------------
|
||||
# 1b: combine the two mutation columns
|
||||
#-----------------------------------------
|
||||
all_muts_colname = paste0("all_mutations_", drug)
|
||||
cat(paste("\nNew column added:", all_muts_colname))
|
||||
raw_data[[all_muts_colname]] = paste(raw_data[[dr_muts_col]], raw_data[[other_muts_col]])
|
||||
head(raw_data[[all_muts_colname]])
|
||||
|
||||
#----------------------------------------------
|
||||
# 1c: create yet another column that contains
|
||||
# all the mutations but in lower case
|
||||
#-----------------------------------------------
|
||||
head(raw_data[[all_muts_colname]])
|
||||
raw_data$all_muts_gene = tolower(raw_data[[all_muts_colname]])
|
||||
head(raw_data$all_muts_gene)
|
||||
|
||||
# sanity checks
|
||||
gene_match = paste0(gene,"_p.")
|
||||
cat(paste0("\nconverting gene match: ", gene_match, " ", "to lowercase\n"))
|
||||
gene_match = tolower(gene_match)
|
||||
|
||||
table(grepl(gene_match,raw_data$all_muts_gene))
|
||||
|
||||
# sanity check: should be TRUE
|
||||
if(sum(table(grepl(gene_match, raw_data$all_muts_gene))) == total_samples){
|
||||
cat("\nPASS: Total no. of samples match\n")
|
||||
} else{
|
||||
cat("\nFAIL: No. of samples mismatch\n")
|
||||
exit()
|
||||
}
|
||||
|
||||
#====================================================
|
||||
# 2: Read valid snps for which OR
|
||||
# can be calculated
|
||||
#=====================================================
|
||||
cat(paste0("\nReading gene associated metadata:", infile_metadata))
|
||||
|
||||
gene_metadata = read.csv(infile_metadata
|
||||
, stringsAsFactors = F
|
||||
, header = T)
|
||||
|
||||
cat(paste("\nDim of gene_metadata:\n"
|
||||
, dim(gene_metadata)))
|
||||
|
||||
# count na in drug column
|
||||
tot_drug_na = sum(is.na(gene_metadata[[drug]]))
|
||||
expected_rows = nrow(gene_metadata) - tot_drug_na
|
||||
|
||||
# drop na from the drug column
|
||||
gene_snps_or = gene_metadata[!is.na(gene_metadata[[drug]]),]
|
||||
|
||||
# sanity check
|
||||
if(nrow(gene_snps_or) == expected_rows){
|
||||
cat("\nPASS: no. of rows match with expected_rows")
|
||||
} else{
|
||||
cat("\nFAIL: nrows mismatch.")
|
||||
exit()
|
||||
}
|
||||
|
||||
# extract unique snps to iterate over for AF and OR calcs
|
||||
gene_snps_unique = unique(gene_snps_or$mutation)
|
||||
|
||||
cat(paste0("\nTotal no. of distinct comp snps to perform OR calcs: ", length(gene_snps_unique)))
|
||||
|
||||
#==================================================
|
||||
# OR calcs using the following 4
|
||||
#1) logistic
|
||||
#2) custom chisq.test
|
||||
#3) fisher
|
||||
#4) chisq.test
|
||||
|
||||
# adjusted logistic (NO good)
|
||||
# kinship (separate script)
|
||||
#=================================================
|
||||
#snps <- gene_snps_unique [1:5] # small test
|
||||
snps <- gene_snps_unique
|
||||
cat(paste0("\nRunning calculations for:"
|
||||
, length(snps), " nssnps\n"
|
||||
, "\ngene: ", gene
|
||||
, "\ndrug: ", drug ))
|
||||
|
||||
# DV: <drug> 0 or 1
|
||||
dst = raw_data[[drug]]
|
||||
|
||||
# initialise an empty df
|
||||
ors_df = data.frame()
|
||||
x = sapply(snps,function(m){
|
||||
|
||||
mut = grepl(m,raw_data$all_muts_gene)
|
||||
mut = as.numeric(mut)
|
||||
cat(paste0("\nRunning mutation:", m, "\n"))
|
||||
|
||||
model<-glm(dst ~ mut, family = binomial)
|
||||
|
||||
#-------------------
|
||||
# allele frequency
|
||||
#-------------------
|
||||
afs = mean(mut)
|
||||
|
||||
#-------------------
|
||||
# logistic model
|
||||
#-------------------
|
||||
beta_logistic = summary(model)$coefficients[2,1]
|
||||
|
||||
or_logistic = exp(summary(model)$coefficients[2,1])
|
||||
#print(paste0("logistic OR:", or_logistic))
|
||||
|
||||
pval_logistic = summary(model)$coefficients[2,4]
|
||||
#print(paste0("logistic pval:", pval_logistic))
|
||||
|
||||
se_logistic = summary(model)$coefficients[2,2]
|
||||
#print(paste0("logistic SE:", se_logistic))
|
||||
|
||||
zval_logistic = summary(model)$coefficients[2,3]
|
||||
#print(paste0("logistic zval:", zval_logistic))
|
||||
|
||||
ci_mod = exp(confint(model))[2,]
|
||||
#print(paste0("logistic CI:", ci_mod))
|
||||
|
||||
ci_lower_logistic = ci_mod[["2.5 %"]]
|
||||
ci_upper_logistic = ci_mod[["97.5 %"]]
|
||||
|
||||
#-------------------
|
||||
# custom_chisq and fisher: OR p-value and CI
|
||||
#-------------------
|
||||
or_mychisq = mychisq_or(dst, mut)
|
||||
#print(paste0("mychisq OR:", or_mychisq))
|
||||
|
||||
odds_fisher = fisher.test(table(dst, mut))$estimate
|
||||
or_fisher = odds_fisher[[1]]
|
||||
|
||||
pval_fisher = fisher.test(table(dst, mut))$p.value
|
||||
|
||||
ci_lower_fisher = fisher.test(table(dst, mut))$conf.int[1]
|
||||
ci_upper_fisher = fisher.test(table(dst, mut))$conf.int[2]
|
||||
|
||||
#-------------------
|
||||
# chi sq estimates
|
||||
#-------------------
|
||||
estimate_chisq = chisq.test(table(dst, mut))$statistic; estimate_chisq
|
||||
est_chisq = estimate_chisq[[1]]; print(est_chisq)
|
||||
|
||||
pval_chisq = chisq.test(table(dst, mut))$p.value
|
||||
|
||||
# build a row to append to df
|
||||
row = data.frame(mutation = m
|
||||
, af = afs
|
||||
, beta_logistic = beta_logistic
|
||||
, or_logistic = or_logistic
|
||||
, pval_logistic = pval_logistic
|
||||
, se_logistic = se_logistic
|
||||
, zval_logistic = zval_logistic
|
||||
, ci_low_logistic = ci_lower_logistic
|
||||
, ci_hi_logistic = ci_upper_logistic
|
||||
, or_mychisq = or_mychisq
|
||||
, or_fisher = or_fisher
|
||||
, pval_fisher = pval_fisher
|
||||
, ci_low_fisher= ci_lower_fisher
|
||||
, ci_hi_fisher = ci_upper_fisher
|
||||
, est_chisq = est_chisq
|
||||
, pval_chisq = pval_chisq
|
||||
)
|
||||
|
||||
ors_df <<- rbind(ors_df, row)
|
||||
})
|
||||
|
||||
#==============================================
|
||||
# Writing file with calculated ORs and AFs
|
||||
#==============================================
|
||||
cat(paste0("\nwriting output file: "
|
||||
, "\nFile: ", outfile))
|
||||
|
||||
write.csv(ors_df, outfile
|
||||
, row.names = F)
|
||||
|
||||
cat(paste0("\nFinished writing:"
|
||||
, outfile
|
||||
, "\nNo. of rows: ", nrow(ors_df)
|
||||
, "\nNo. of cols: ", ncol(ors_df)))
|
||||
cat("\n======sneak peek into a few muts with prominent or and p-vals=======\n")
|
||||
|
||||
cat(paste0("======================================="
|
||||
, "\nmutation with highest logistic OR:"
|
||||
, "\n=======================================\n"))
|
||||
print(ors_df[which(ors_df$or_logistic == max(ors_df$or_logistic)),])
|
||||
|
||||
cat(paste0("======================================="
|
||||
, "\nmutation with highest mychisq OR:"
|
||||
, "\n=======================================\n"))
|
||||
|
||||
print(ors_df[which(ors_df$or_mychisq == max(ors_df$or_mychisq)),])
|
||||
|
||||
# gives too many due to Inf
|
||||
#cat(paste0("======================================="
|
||||
#, "\nmutation with highest fisher OR:"
|
||||
#, "\n=======================================\n"))
|
||||
#print(ors_df[which(ors_df$or_fisher == max(ors_df$or_fisher)),])
|
||||
|
||||
cat(paste0("======================================="
|
||||
, "\nmutation with lowest logistic pval:"
|
||||
, "\n=======================================\n"))
|
||||
print(ors_df[which(ors_df$pval_logistic == min(ors_df$pval_logistic)),])
|
||||
|
||||
cat(paste0("======================================="
|
||||
, "\nmutation with lowest fisher pval:"
|
||||
, "\n=======================================\n"))
|
||||
print(ors_df[which(ors_df$pval_fisher == min(ors_df$pval_fisher)),])
|
||||
|
||||
################################################################
|
||||
cat("\nEnd of script: calculated AF, OR, pvalues and saved file\n")
|
||||
#################################################################
|
||||
|
||||
}
|
13
scripts/functions/mychisq_or.R
Normal file
13
scripts/functions/mychisq_or.R
Normal file
|
@ -0,0 +1,13 @@
|
|||
mychisq_or = function(dst_numeric, mut_numeric){
|
||||
tab = as.matrix(table(dst_numeric, mut_numeric))
|
||||
a = tab[2,2]
|
||||
if (a==0){ a<-0.5}
|
||||
b = tab[2,1]
|
||||
if (b==0){ b<-0.5}
|
||||
c = tab[1,2]
|
||||
if (c==0){ c<-0.5}
|
||||
d = tab[1,1]
|
||||
if (d==0){ d<-0.5}
|
||||
(a/b)/(c/d)
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue