added 2 logo plot scripts
This commit is contained in:
parent
f9837b474c
commit
95e8205189
2 changed files with 550 additions and 0 deletions
278
mcsm_analysis/pyrazinamide/scripts/plotting/logo_plot_logolas.R
Normal file
278
mcsm_analysis/pyrazinamide/scripts/plotting/logo_plot_logolas.R
Normal file
|
@ -0,0 +1,278 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_Y1_PNCA/mcsm_analysis/pyrazinamide/Scripts/Plotting")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
#source("../Header_TT.R")
|
||||
|
||||
#source("barplot_colour_function.R")
|
||||
|
||||
#library(ggseqlogo)
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for lig #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "/home/tanu/git/LSHTM_Y1_PNCA/mcsm_analysis/pyrazinamide/Scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
#merged_df2 # 3092, 35
|
||||
#merged_df2_comp #3012, 35
|
||||
|
||||
#merged_df3 #335, 35
|
||||
#merged_df3_comp #293, 35
|
||||
#==========================
|
||||
|
||||
###########################
|
||||
# Data for Logo plots
|
||||
# you need big df i.e
|
||||
# merged_df2
|
||||
# or
|
||||
# merged_df2_comp
|
||||
# since these have unique SNPs
|
||||
# I prefer to use the merged_df2
|
||||
# because using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df2
|
||||
#my_df = merged_df2_comp
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# doesn't work if you use the big df as it has duplicate snps
|
||||
#rownames(my_df) = my_df$Mutationinformation
|
||||
|
||||
# sanity check: should be True
|
||||
table(my_df$position == my_df$Position)
|
||||
|
||||
c1 = unique(my_df$Position) # 130
|
||||
nrow(my_df) # 3092
|
||||
|
||||
# extract freq_pos>1 since this will not add to much in the logo plot
|
||||
my_data_snp = my_df[my_df$occurrence!=1,] #3072, 36...3019
|
||||
u = unique(my_data_snp$Position) #96
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#########################################################
|
||||
# Task: To generate a logo plot or bar plot but coloured
|
||||
# aa properties.
|
||||
# step1: read mcsm file and OR file
|
||||
# step2: plot wild type positions
|
||||
# step3: plot mutants per position coloured by aa properties
|
||||
# step4: make the size of the letters/bars prop to OR if you can!
|
||||
#########################################################
|
||||
##useful links
|
||||
#https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
||||
#https://omarwagih.github.io/ggseqlogo/
|
||||
#https://kkdey.github.io/Logolas-pages/workflow.html
|
||||
#A new sequence logo plot to highlight enrichment and depletion.
|
||||
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288878/
|
||||
|
||||
##very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
|
||||
|
||||
|
||||
#############
|
||||
#PLOTS: Bar plot with aa properties
|
||||
#using gglogo
|
||||
#useful links: https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
||||
#############
|
||||
#following example
|
||||
require(ggplot2)
|
||||
require(reshape2)
|
||||
library(gglogo)
|
||||
library(ggrepel)
|
||||
#lmf <- melt(logodf, id.var='pos')
|
||||
foo = my_data_snp[, c("Position"
|
||||
, "Mutant_type"
|
||||
, "ratioDUET"
|
||||
, "OR"
|
||||
, "mut_prop_polarity"
|
||||
, "mut_prop_water") ]
|
||||
head(foo) #3019, 6
|
||||
|
||||
foo = foo[order(foo$Position),]
|
||||
head(foo)
|
||||
|
||||
|
||||
##############
|
||||
# ggseqlogo
|
||||
#https://stackoverflow.com/questions/1439513/creating-a-sequential-list-of-letters-with-r
|
||||
##############
|
||||
|
||||
# Some sample data for aa
|
||||
data(ggseqlogo_sample)
|
||||
|
||||
seqs_aa = seqs_aa$AKT1
|
||||
class(seqs_aa); str(seqs_aa)
|
||||
|
||||
# seq logo with custom x-axis
|
||||
ggseqlogo( seqs_aa$AKT1, seq_type='aa'
|
||||
, col_scheme = "hydrophobicity")+
|
||||
theme(legend.position = "top")
|
||||
#theme(axis.text.x = element_blank()) +
|
||||
theme_logo()#+
|
||||
#scale_x_continuous(breaks= 1:15
|
||||
#, expand = c(0.105, 0)
|
||||
# , labels = LETTERS[1:15]
|
||||
|
||||
|
||||
|
||||
##############
|
||||
# ggseqlogo: custom matrix of my data
|
||||
##############
|
||||
snps = read.csv(#'../Data/snps_msa2.txt'
|
||||
# '../Data/snps_msa.txt'
|
||||
'../Data/gene_msa.txt'
|
||||
, stringsAsFactors = F
|
||||
, header = F) #3072,
|
||||
class(snps)
|
||||
snps2 = as.character(snps[1:nrow(snps),])
|
||||
|
||||
class(snps2); str(snps2)
|
||||
ggseqlogo(snps2) # COMPLAINS about length of each sequence if snps_msa2 is used
|
||||
|
||||
#### NOT WORKING
|
||||
|
||||
#source("http://bioconductor.org/biocLite.R")
|
||||
#install.packages("BiocManager")
|
||||
#library(BiocManager)
|
||||
BiocManager::install("Logolas")
|
||||
#biocLite("Logolas")
|
||||
library("Logolas")
|
||||
#https://kkdey.github.io/Logolas-pages/workflow.html
|
||||
|
||||
# partially working
|
||||
|
||||
#==============
|
||||
# matrix for mutant type
|
||||
# frequency of mutant type by position
|
||||
#==============
|
||||
table(my_data_snp$Mutant_type, my_data_snp$Position)
|
||||
tab_mt = table(my_data_snp$Mutant_type, my_data_snp$Position)
|
||||
class(tab_mt)
|
||||
# unclass to convert to matrix
|
||||
tab_mt = unclass(tab_mt)
|
||||
tab_mt = as.matrix(tab_mt, rownames = T)
|
||||
|
||||
# should be TRUE
|
||||
is.matrix(tab_mt)
|
||||
|
||||
rownames(tab_mt) #aa
|
||||
colnames(tab_mt) #pos
|
||||
|
||||
#**********************
|
||||
# Plot 1: mutant logo
|
||||
#**********************
|
||||
my_ymax = max(my_data_snp$occurrence); my_ymax
|
||||
my_ylim = c(0,my_ymax)
|
||||
|
||||
# axis sizes
|
||||
# common: text and label
|
||||
my_ats = 15
|
||||
my_als = 20
|
||||
|
||||
# individual: text and label
|
||||
my_xats = 15
|
||||
my_yats = 20
|
||||
my_xals = 15
|
||||
my_yals = 20
|
||||
|
||||
# legend size: text and label
|
||||
my_lts = 20
|
||||
#my_lls = 20
|
||||
|
||||
# Color scheme based on chemistry of amino acids
|
||||
chemistry = data.frame(
|
||||
letter = c('G', 'S', 'T', 'Y', 'C', 'N', 'Q', 'K', 'R', 'H', 'D', 'E', 'P', 'A', 'W', 'F', 'L', 'I', 'M', 'V'),
|
||||
group = c(rep('Polar', 5), rep('Neutral', 2), rep('Basic', 3), rep('Acidic', 2), rep('Hydrophobic', 8)),
|
||||
col = c(rep('#109648', 5), rep('#5E239D', 2), rep('#255C99', 3), rep('#D62839', 2), rep('#221E22', 8)),
|
||||
stringsAsFactors = F
|
||||
)
|
||||
|
||||
|
||||
# EDlogo
|
||||
logomaker(tab_mt
|
||||
, type = "EDLogo"
|
||||
# , type = "Logo"
|
||||
, return_heights = T
|
||||
, color_type = "per_row"
|
||||
, colors = chemistry$col
|
||||
# , method = 'custom'
|
||||
# , seq_type = 'aa'
|
||||
# , col_scheme = "taylor"
|
||||
# , col_scheme = "chemistry2"
|
||||
) +
|
||||
|
||||
theme(legend.position = "bottom"
|
||||
, legend.title = element_blank()
|
||||
, legend.text = element_text(size = my_lts)
|
||||
, axis.text.x = element_text(size = my_xats , angle = 90)
|
||||
# , axis.text.y = element_text(size = my_yats , angle = 90)
|
||||
)
|
||||
|
||||
p0 = logomaker(tab_mt
|
||||
, type = "EDLogo"
|
||||
, return_heights = T
|
||||
# , method = 'custom'
|
||||
# , seq_type = 'aa'
|
||||
# , col_scheme = "taylor"
|
||||
# , col_scheme = "chemistry2"
|
||||
) +
|
||||
#ylab('my custom height') +
|
||||
theme(axis.text.x = element_blank()) +
|
||||
theme_logo()+
|
||||
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab)) )
|
||||
scale_x_continuous(breaks = 1:ncol(tab_mt)
|
||||
, labels = colnames(tab_mt))+
|
||||
scale_y_continuous( breaks = 1:my_ymax
|
||||
, limits = my_ylim)
|
||||
|
||||
p0
|
||||
|
||||
# further customisation
|
||||
p1 = p0 + theme(legend.position = "bottom"
|
||||
, legend.title = element_blank()
|
||||
, legend.text = element_text(size = leg_size)
|
||||
, axis.text.x = element_text(size = x_size , angle = 90)
|
||||
, axis.text.y = element_text(size = y_size , angle = 90))
|
||||
p1
|
||||
|
||||
|
||||
#####
|
||||
|
||||
|
||||
logomaker(snps2, type = "EDLogo"
|
||||
, color_type = "per_symbol") +
|
||||
theme(axis.text.x = element_blank()) +
|
||||
theme_logo()+
|
||||
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab)) )
|
||||
scale_x_continuous(breaks = 1:ncol(tab_mt)
|
||||
, labels = colnames(tab_mt))+
|
||||
scale_y_continuous( breaks = 1:my_ymax
|
||||
, limits = my_ylim)
|
||||
|
||||
|
272
mcsm_analysis/pyrazinamide/scripts/plotting/snp_logo_plot.R
Normal file
272
mcsm_analysis/pyrazinamide/scripts/plotting/snp_logo_plot.R
Normal file
|
@ -0,0 +1,272 @@
|
|||
getwd()
|
||||
setwd("~/git//LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
# TASK: Multiple mutations per site
|
||||
# as aa symbol coloured by aa property
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
#source("../Header_TT.R")
|
||||
|
||||
#source("barplot_colour_function.R")
|
||||
|
||||
library(ggseqlogo)
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for lig #
|
||||
########################################################################
|
||||
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "/home/tanu/git/LSHTM_Y1_PNCA/mcsm_analysis/pyrazinamide/Scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
#merged_df2 # 3092, 35
|
||||
#merged_df2_comp #3012, 35
|
||||
|
||||
#merged_df3 #335, 35
|
||||
#merged_df3_comp #293, 35
|
||||
#==========================
|
||||
|
||||
###########################
|
||||
# Data for Logo plots
|
||||
# you need small df i.e
|
||||
# merged_df3
|
||||
# or
|
||||
# merged_df3_comp? possibly
|
||||
# since these have unique SNPs
|
||||
# I prefer to use the merged_df3
|
||||
# because using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available
|
||||
###########################
|
||||
|
||||
# uncomment as necessary
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df3 # to show multiple mutations per site
|
||||
#%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
rownames(my_df) = my_df$Mutationinformation
|
||||
|
||||
c1 = unique(my_df$Position) #130
|
||||
nrow(my_df) #335
|
||||
|
||||
table(my_df$occurrence)
|
||||
#1 2 3 4 5 6
|
||||
#34 76 63 104 40 18
|
||||
|
||||
# get freq count of positions so you can subset freq<1
|
||||
#: already done in teh combining script
|
||||
#require(data.table)
|
||||
#setDT(my_df)[, occurrence := .N, by = .(Position)] #189, 36
|
||||
|
||||
table(my_df$Position); table(my_df$occurrence)
|
||||
|
||||
# extract freq_pos>1
|
||||
my_data_snp = my_df[my_df$occurrence!=1,] #301, 36
|
||||
u_pos = unique(my_data_snp$Position) #96
|
||||
|
||||
# sanity check
|
||||
exp_dim = nrow(my_df) - table(my_df$occurrence)[[1]]; exp_dim
|
||||
if ( nrow(my_data_snp) == exp_dim ){
|
||||
print("Sanity check passed: Data filtered correctly, dim match")
|
||||
} else {
|
||||
print("Error: Please Debug")
|
||||
}
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
||||
#########################################################
|
||||
# Task: To generate a logo plot or bar plot but coloured
|
||||
# aa properties.
|
||||
# step1: read data file
|
||||
# step2: plot wild type positions
|
||||
# step3: plot mutants per position coloured by aa properties
|
||||
# step4: make the size of the letters/bars prop to OR if you can!
|
||||
#########################################################
|
||||
# useful links
|
||||
# https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
||||
# https://omarwagih.github.io/ggseqlogo/
|
||||
# https://kkdey.github.io/Logolas-pages/workflow.html
|
||||
# A new sequence logo plot to highlight enrichment and depletion.
|
||||
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288878/
|
||||
# very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
|
||||
|
||||
|
||||
#############
|
||||
# PLOTS: Bar plot with aa properties
|
||||
# using gglogo
|
||||
# useful links: https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
||||
#############
|
||||
|
||||
##############
|
||||
# ggseqlogo: custom matrix of my data
|
||||
##############
|
||||
|
||||
#==============
|
||||
# matrix for mutant type
|
||||
# frequency of mutant type by position
|
||||
#==============
|
||||
table(my_data_snp$Mutant_type, my_data_snp$Position)
|
||||
tab_mt = table(my_data_snp$Mutant_type, my_data_snp$Position)
|
||||
class(tab_mt)
|
||||
|
||||
# unclass to convert to matrix
|
||||
tab_mt = unclass(tab_mt)
|
||||
tab_mt = as.matrix(tab_mt, rownames = T)
|
||||
|
||||
# should be TRUE
|
||||
is.matrix(tab_mt)
|
||||
|
||||
rownames(tab_mt) #aa
|
||||
colnames(tab_mt) #pos
|
||||
|
||||
#==============
|
||||
# matrix for wild type
|
||||
# frequency of wild type by position
|
||||
#==============
|
||||
# remove wt duplicates
|
||||
wt = my_data_snp[, c("Position", "Wild_type")] #301, 2
|
||||
wt = wt[!duplicated(wt),]#96, 2
|
||||
|
||||
table(wt$Wild_type) # contains duplicates
|
||||
|
||||
tab_wt = table(wt$Wild_type, wt$Position); tab_wt # should all be 1
|
||||
|
||||
tab_wt = unclass(tab_wt) #important
|
||||
class(tab_wt); rownames(tab_wt)
|
||||
#tab_wt = as.matrix(tab_wt, rownames = T)
|
||||
|
||||
rownames(tab_wt)
|
||||
rownames(tab_mt)
|
||||
|
||||
# sanity check
|
||||
if (ncol(tab_wt) == length(u_pos) ){
|
||||
print("Sanity check passed: wt data dim match")
|
||||
} else {
|
||||
print("Error: Please debug")
|
||||
}
|
||||
|
||||
#**************
|
||||
# Plot 1: mutant logo
|
||||
#**************
|
||||
#install.packages("digest")
|
||||
#library(digest)
|
||||
# following example
|
||||
require(ggplot2)
|
||||
require(reshape2)
|
||||
library(gglogo)
|
||||
library(ggrepel)
|
||||
library(ggseqlogo)
|
||||
|
||||
# generate seq logo for mutant type
|
||||
my_ymax = max(my_data_snp$occurrence); my_ymax
|
||||
my_ylim = c(0, my_ymax)
|
||||
#my_yrange = 1:my_ymax; my_yrange
|
||||
|
||||
# axis sizes
|
||||
# common: text and label
|
||||
my_ats = 15
|
||||
my_als = 20
|
||||
|
||||
# individual: text and label
|
||||
my_xats = 15
|
||||
my_yats = 20
|
||||
my_xals = 15
|
||||
my_yals = 20
|
||||
|
||||
# legend size: text and label
|
||||
my_lts = 20
|
||||
#my_lls = 20
|
||||
|
||||
p0 = ggseqlogo(tab_mt
|
||||
, method = 'custom'
|
||||
, seq_type = 'aa'
|
||||
# , col_scheme = "taylor"
|
||||
# , col_scheme = "chemistry2"
|
||||
) +
|
||||
# ylab('my custom height') +
|
||||
theme(axis.text.x = element_blank()) +
|
||||
theme_logo()+
|
||||
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab_mt)) )
|
||||
scale_x_continuous(breaks = 1:ncol(tab_mt)
|
||||
, labels = colnames(tab_mt))+
|
||||
scale_y_continuous( breaks = 1:my_ymax
|
||||
, limits = my_ylim)
|
||||
|
||||
p0
|
||||
|
||||
# further customisation
|
||||
p1 = p0 + theme(legend.position = "none"
|
||||
, legend.title = element_blank()
|
||||
, legend.text = element_text(size = my_lts)
|
||||
, axis.text.x = element_text(size = my_xats, angle = 90)
|
||||
, axis.text.y = element_text(size = my_yats, angle = 90))
|
||||
p1
|
||||
|
||||
#**************
|
||||
# Plot 2: for wild_type
|
||||
# with custom x axis to reflect my aa positions
|
||||
#**************
|
||||
# sanity check: MUST BE TRUE
|
||||
# for the correctnes of the x axis
|
||||
identical(colnames(tab_mt), colnames(tab_wt))
|
||||
identical(ncol(tab_mt), ncol(tab_wt))
|
||||
|
||||
p2 = ggseqlogo(tab_wt
|
||||
, method = 'custom'
|
||||
, seq_type = 'aa'
|
||||
# , col_scheme = "taylor"
|
||||
# , col_scheme = chemistry2
|
||||
) +
|
||||
# ylab('my custom height') +
|
||||
theme(axis.text.x = element_blank()
|
||||
, axis.text.y = element_blank()) +
|
||||
theme_logo() +
|
||||
scale_x_continuous(breaks = 1:ncol(tab_wt)
|
||||
, labels = colnames(tab_wt)) +
|
||||
scale_y_continuous( breaks = 0:1
|
||||
, limits = my_ylim )
|
||||
|
||||
p2
|
||||
|
||||
# further customise
|
||||
|
||||
p3 = p2 +
|
||||
theme(legend.position = "bottom"
|
||||
, legend.text = element_text(size = my_lts)
|
||||
, axis.text.x = element_text(size = my_ats-
|
||||
, angle = 90)
|
||||
, axis.text.y = element_blank())
|
||||
|
||||
p3
|
||||
|
||||
|
||||
# Now combine using cowplot, which ensures the plots are aligned
|
||||
suppressMessages( require(cowplot) )
|
||||
|
||||
plot_grid(p1, p3, ncol = 1, align = 'v') #+
|
||||
# background_grid(minor = "xy"
|
||||
# , size.minor = 1
|
||||
# , colour.minor = "grey86")
|
||||
|
||||
|
||||
#colour scheme
|
||||
#https://rdrr.io/cran/ggseqlogo/src/R/col_schemes.r
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue