diff --git a/scripts/ml/ml_functions/MultClfs_logo_skf.py b/scripts/ml/ml_functions/MultClfs_logo_skf.py index 1b4c2ff..e2fc932 100755 --- a/scripts/ml/ml_functions/MultClfs_logo_skf.py +++ b/scripts/ml/ml_functions/MultClfs_logo_skf.py @@ -261,34 +261,34 @@ def MultModelsCl_logo_skf(input_df #====================================================== models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) ) , ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True, verbose = 3, n_estimators = 100) ) - # , ('Decision Tree' , DecisionTreeClassifier(**rs) ) - # , ('Extra Tree' , ExtraTreeClassifier(**rs) ) - # , ('Extra Trees' , ExtraTreesClassifier(**rs) ) - # , ('Gradient Boosting' , GradientBoostingClassifier(**rs) ) - # , ('Gaussian NB' , GaussianNB() ) - # , ('Gaussian Process' , GaussianProcessClassifier(**rs) ) - # , ('K-Nearest Neighbors' , KNeighborsClassifier() ) - # , ('LDA' , LinearDiscriminantAnalysis() ) - # , ('Logistic Regression' , LogisticRegression(**rs) ) - # , ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs)) - # , ('MLP' , MLPClassifier(max_iter = 500, **rs) ) - # , ('Multinomial' , MultinomialNB() ) - # , ('Naive Bayes' , BernoulliNB() ) - # , ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) ) - # , ('QDA' , QuadraticDiscriminantAnalysis() ) - # , ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000, **njobs ) ) - # , ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5 - # , n_estimators = 1000 - # , bootstrap = True - # , oob_score = True - # , **njobs - # , **rs - # , max_features = 'auto') ) - # , ('Ridge Classifier' , RidgeClassifier(**rs) ) - # , ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) ) - # , ('SVC' , SVC(**rs) ) - # , ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) ) - # , ('XGBoost' , XGBClassifier(**rs, verbosity = 0, use_label_encoder = False, **njobs) ) + , ('Decision Tree' , DecisionTreeClassifier(**rs) ) + , ('Extra Tree' , ExtraTreeClassifier(**rs) ) + , ('Extra Trees' , ExtraTreesClassifier(**rs) ) + , ('Gradient Boosting' , GradientBoostingClassifier(**rs) ) + , ('Gaussian NB' , GaussianNB() ) + , ('Gaussian Process' , GaussianProcessClassifier(**rs) ) + , ('K-Nearest Neighbors' , KNeighborsClassifier() ) + , ('LDA' , LinearDiscriminantAnalysis() ) + , ('Logistic Regression' , LogisticRegression(**rs) ) + , ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs)) + , ('MLP' , MLPClassifier(max_iter = 500, **rs) ) + , ('Multinomial' , MultinomialNB() ) + , ('Naive Bayes' , BernoulliNB() ) + , ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) ) + , ('QDA' , QuadraticDiscriminantAnalysis() ) + , ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000, **njobs ) ) + , ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5 + , n_estimators = 1000 + , bootstrap = True + , oob_score = True + , **njobs + , **rs + , max_features = 'auto') ) + , ('Ridge Classifier' , RidgeClassifier(**rs) ) + , ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) ) + , ('SVC' , SVC(**rs) ) + , ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) ) + , ('XGBoost' , XGBClassifier(**rs, verbosity = 0, use_label_encoder = False, **njobs) ) ] mm_skf_scoresD = {}